Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate.

Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.

[1]  Anirvan Ghosh,et al.  The role of Notch and Rho GTPase signaling in the control of dendritic development , 2001, Current Opinion in Neurobiology.

[2]  P. Bhide,et al.  Concurrent cellular output from two proliferative populations in the early embryonic mouse corpus striatum , 1997, The Journal of comparative neurology.

[3]  P. Rakic,et al.  Molecular and Morphological Heterogeneity of Neural Precursors in the Mouse Neocortical Proliferative Zones , 2006, The Journal of Neuroscience.

[4]  A. Kriegstein,et al.  Wide Dispersion and Diversity of Clonally Related Inhibitory Interneurons , 2015, Neuron.

[5]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[6]  A. Gloster,et al.  Early induction of Tα1 α‐tubulin transcription in neurons of the developing nervous system , 1999 .

[7]  S. Anderson,et al.  Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon , 2008, The Journal of comparative neurology.

[8]  M. Ross,et al.  Differences in cyclin D2 and D1 protein expression distinguish forebrain progenitor subsets. , 2007, Cerebral cortex.

[9]  O. Marín,et al.  The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons , 2009, The Journal of Neuroscience.

[10]  James D. Griffin,et al.  Growth Suppression of Pre-T Acute Lymphoblastic Leukemia Cells by Inhibition of Notch Signaling , 2003, Molecular and Cellular Biology.

[11]  R. Kuzniecky,et al.  A developmental and genetic classification for malformations of cortical development: update 2012 , 2012, Brain : a journal of neurology.

[12]  Y. Jan,et al.  Mammalian Par3 Regulates Progenitor Cell Asymmetric Division via Notch Signaling in the Developing Neocortex , 2009, Neuron.

[13]  A. Gloster,et al.  Early induction of Talpha1 alpha-tubulin transcription in neurons of the developing nervous system. , 1999, The Journal of comparative neurology.

[14]  S. Anderson,et al.  A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. , 2008, Developmental biology.

[15]  J. Rubenstein,et al.  Lhx6 Directly Regulates Arx and CXCR7 to Determine Cortical Interneuron Fate and Laminar Position , 2014, Neuron.

[16]  Y. Kong,et al.  Mind Bomb 1-Expressing Intermediate Progenitors Generate Notch Signaling to Maintain Radial Glial Cells , 2008, Neuron.

[17]  Oscar Marín,et al.  Origin and Molecular Specification of Globus Pallidus Neurons , 2010, The Journal of Neuroscience.

[18]  H. Clevers,et al.  Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type , 2013, Nature Communications.

[19]  S. Anderson,et al.  Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. , 2012, Cerebral cortex.

[20]  N. Gaiano,et al.  Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. , 2007, Nature.

[21]  J. Knoblich,et al.  Mouse Inscuteable Induces Apical-Basal Spindle Orientation to Facilitate Intermediate Progenitor Generation in the Developing Neocortex , 2011, Neuron.

[22]  E. Callaway,et al.  Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells , 2010, The Journal of comparative neurology.

[23]  S. Anderson,et al.  Clonal Production and Organization of Inhibitory Interneurons in the Neocortex , 2011, Science.

[24]  E. Rossignol,et al.  Genetics and Function of Neocortical GABAergic Interneurons in Neurodevelopmental Disorders , 2011, Neural plasticity.

[25]  A. Hadjantonakis,et al.  Tbr2 Directs Conversion of Radial Glia into Basal Precursors and Guides Neuronal Amplification by Indirect Neurogenesis in the Developing Neocortex , 2008, Neuron.

[26]  H. Okano,et al.  Direct isolation of committed neuronal progenitor cells from transgenic mice coexpressing spectrally distinct fluorescent proteins regulated by stage‐specific neural promoters , 2001, Journal of neuroscience research.

[27]  O. Marín,et al.  Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes , 2007, The Journal of Neuroscience.

[28]  A. Espinosa,et al.  Fate-Restricted Neural Progenitors in the Mammalian Cerebral Cortex , 2012, Science.

[29]  S. Lodato,et al.  Loss of COUP-TFI Alters the Balance between Caudal Ganglionic Eminence- and Medial Ganglionic Eminence-Derived Cortical Interneurons and Results in Resistance to Epilepsy , 2011, The Journal of Neuroscience.

[30]  M. Ross,et al.  Selective cortical interneuron and GABA deficits in cyclin D2-null mice , 2007, Development.

[31]  R. Kuzniecky,et al.  A developmental and genetic classification for malformations of cortical development , 2005, Neurology.

[32]  Miguel Maravall,et al.  Lineage-specific laminar organization of cortical GABAergic interneurons , 2013, Nature Neuroscience.

[33]  R. McKay,et al.  Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors , 1994, Neuron.

[34]  Jan H Lui,et al.  Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences , 2013, Nature Neuroscience.

[35]  S. Anderson,et al.  Origins of Cortical Interneuron Subtypes , 2004, The Journal of Neuroscience.

[36]  A. Kriegstein,et al.  Development and Evolution of the Human Neocortex , 2011, Cell.

[37]  T. Haydar,et al.  Heterogeneity in Ventricular Zone Neural Precursors Contributes to Neuronal Fate Diversity in the Postnatal Neocortex , 2010, The Journal of Neuroscience.

[38]  Oscar Marín,et al.  Interneuron dysfunction in psychiatric disorders , 2012, Nature Reviews Neuroscience.

[39]  C. Englund,et al.  Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. , 2009, Cerebral cortex.

[40]  Simon Hippenmeyer,et al.  Clonally Related Forebrain Interneurons Disperse Broadly across Both Functional Areas and Structural Boundaries , 2015, Neuron.

[41]  S. Anderson,et al.  Mutations of the Homeobox Genes Dlx-1 and Dlx-2 Disrupt the Striatal Subventricular Zone and Differentiation of Late Born Striatal Neurons , 1997, Neuron.

[42]  H. Moore,et al.  Sonic Hedgehog Signaling Confers Ventral Telencephalic Progenitors with Distinct Cortical Interneuron Fates , 2010, Neuron.

[43]  M. Mapelli,et al.  Going vertical: functional role and working principles of the protein Inscuteable in asymmetric cell divisions , 2013, Cellular and Molecular Life Sciences.