The calculation of vacancy formation energies in the alkali metals Li, Na and K

The formation energies of vacancies in Li, Na and K have been calculated as functions of temperature using pair potentials determined from first principles. Included in the calculation is a term describing the change in entropy upon formation of the defect. This term is of critical importance in obtaining the right temperature dependence. When combined with earlier calculations of migration energies, the results agree very precisely with the measured self-diffusion energies, giving strong support to the single-defect mechanism for diffusion. On the other hand the calculated formation energies do not agree particularly well with the published measurements, leading to the suggestion that a re-interpretation of these experimental results would be useful.

[1]  G. Jacucci,et al.  The use of long-range metallic pair potentials in computer simulations , 1979 .

[2]  V. Vítek,et al.  Periodic grain boundary structures in aluminium I. A combined experimental and theoretical investigation of coincidence grain boundary structure in aluminium , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  G. Jacucci,et al.  Vacancy Double Jumps and Atomic Diffusion in Aluminum and Sodium , 1977 .

[4]  C. Leung,et al.  Temperature dependence of monovacancy parameters for simple metals. Application to Na and Al , 1977 .

[5]  H. M. Gilder,et al.  Validity of Using Lattice Statics at All Temperatures , 1977 .

[6]  M. Duesbery,et al.  The exact summation of asymptotic ion-pair potentials in simple metallic structures , 1977 .

[7]  C. R. Leavens First principles calculation of the electronic contribution to the thermal conductivity of potassium , 1977 .

[8]  M. M. Beg,et al.  Temperature Dependence of Lattice Dynamics of Lithium 7 , 1976 .

[9]  M. Klein,et al.  Correction to a previous pseudopotential calculation of the elastic constants of sodium , 1976 .

[10]  M. Finnis,et al.  Vacancy formation volumes in simple metals , 1976 .

[11]  M. Dharma-wardana The dielectric function of the electron gas at intermediate densities. I , 1976 .

[12]  M. Finnis,et al.  Vacancy formation energies and linear screening theory , 1976 .

[13]  R. Shukla,et al.  Calculation of the phonon-limited ideal resistivity of potassium and sodium , 1976 .

[14]  M. Klein,et al.  A computer simulation of thermodynamic properties of solid Na , 1976 .

[15]  G. Fritsch,et al.  Equilibrium defect properties of sodium in the high temperature range , 1975 .

[16]  R. Nieminen,et al.  Electrons and positrons in metal vacancies , 1975 .

[17]  M. Klein,et al.  Thermodynamic properties of potassium at 160 and 308 K , 1975 .

[18]  P. Châtel,et al.  Charge distribution in heterovalent alloys , 1975 .

[19]  D. Lazarus,et al.  Role of vacancy anharmonicity on non-Arrhenius diffusional behavior , 1975 .

[20]  M. Rasolt,et al.  Charge densities and interionic potentials in simple metals: Nonlinear effects. I , 1975 .

[21]  A. Stoneham,et al.  Theory of the diffusion of heavy impurities in alkali metals , 1975 .

[22]  C. A. Swenson,et al.  Linear-thermal-expansion measurements on potassium metal from 2 to 320 K , 1974 .

[23]  Z. Popović,et al.  On the vacancy formation energy and volume of simple cubic metals , 1974 .

[24]  G. Fritsch,et al.  The isothermal compressibility and the isobaric expansivity of solid sodium , 1973 .

[25]  C. P. Flynn,et al.  Point Defects and Diffusion , 1973 .

[26]  P. Ho DEFECT ENERGETICS FOR SELF-DIFFUSION IN SODIUM. , 1973 .

[27]  M. Rasolt,et al.  Correlation and exchange contributions to the charge density variations of an electron gas in the metallic range , 1972 .

[28]  P. Ho Application of pseudopotentials to the calculation of vacancy formation energy and volume for alkali metals , 1971 .

[29]  J. Mundy EFFECT OF PRESSURE ON THE ISOTOPE EFFECT IN SODIUM SELF-DIFFUSION. , 1971 .

[30]  R. Feder Equilibrium Defect Concentration in Crystalline Lithium , 1970 .

[31]  D. Geldart,et al.  Wave-number dependence of the static screening function of an interacting electron gas. II. Higher-order exchange and correlation effects , 1970 .

[32]  R. H. Martinson Variation of the Elastic Constants of Sodium with Temperature and Pressure , 1969 .

[33]  G. Sullivan Electromigration and Thermal Transport in Sodium Metal , 1967 .

[34]  F. A. Smith,et al.  Self-diffusion in potassium , 1967 .

[35]  N. Terzi,et al.  Vibrational properties of a vacancy in Born-von Kármánn f.c.c. lattices , 1964 .

[36]  R. Barnes,et al.  PRESSURE DEPENDENCE OF SELF-DIFFUSION IN LITHIUM AND SODIUM , 1962 .

[37]  Charles S. Smith,et al.  Single-crystal elastic constants of lithium , 1959 .

[38]  R. Feder,et al.  Use of Thermal Expansion Measurements to Detect Lattice Vacancies near the Melting Point of Pure Lead and Aluminum , 1958 .

[39]  F. Fumi CXVI. Vacancies in monovalent metals , 1955 .

[40]  J. D. Eshelby Distortion of a Crystal by Point Imperfections , 1954 .

[41]  D. MacDonald Self‐Diffusion in the Alkali Metals , 1953 .

[42]  H. B. Huntington Self-Consistent Treatment of the Vacancy Mechanism for Metallic Diffusion , 1942 .

[43]  H. B. Huntington,et al.  Mechanism for Self-Diffusion in Metallic Copper , 1942 .