Effects of cations and charge types on the metastable decay rates of oligosaccharides.

Metastable decay rates of alpha-cyclodextrin and maltohexaose coordinated to proton and alkali metal ions were determined from ions produced by liquid secondary ion mass spectrometry in an external source Fourier transform mass spectrometry instrument. For both oligosaccharide compounds the decay rates of the protonated species are faster than any alkali metal coordinated species. Decay rates of the metal cationized species decrease in the order Li+, Na+, K+, and Cs+. The anion of alpha-cyclodextrin has the slowest measurable decomposition rate. The relationships between cation affinities and rates are explored.

[1]  J. Sunner,et al.  Kinetic modeling of fast atom bombardment spectra of glycerol-diethanolamine mixtures , 1988 .

[2]  D. Hercules,et al.  Study of cationization of saccharides by laser mass spectrometry , 1989 .

[3]  J. A. Carroll,et al.  Liquid secondary ion mass spectrometry/Fourier transform mass spectrometry of oligosaccharide anions. , 1993, Analytical chemistry.

[4]  R. Taft,et al.  Free energies of cation-molecule complex formation and cation-solvent transfers , 1990 .

[5]  R. Cooks,et al.  Mechanisms in molecular SIMS , 1987 .

[6]  T. Märk,et al.  The metastable and collision‐induced dissociation of propane, CO2‐cluster, and NH3‐cluster ions , 1982 .

[7]  C. Lebrilla,et al.  A 3T external source quadrupole Fourier transform mass spectrometer for ion/molecule reactions and analysis , 1991 .

[8]  T. Mcmahon,et al.  Determination of radiative and unimolecular decomposition lifetimes of chemically activated ions by Fourier transform ion cyclotron resonance spectrometry , 1988 .

[9]  G. Puzo,et al.  Analysis of carbohydrates by fast atom bombardment mass spectrometry: 2—Influence of the matrix and the nature of the alkaline cations in the attachment process of an alkaline cation to a disaccharide molecule , 1985 .

[10]  P. Demirev,et al.  High-mass ion fragmentation as a function of time and mass. , 1987, Analytical chemistry.

[11]  R. Woodin,et al.  Binding of lithium(1+) ion to Lewis bases in the gas phase. Reversals in methyl substituent effects for different reference acids , 1978 .

[12]  M. Bensimon,et al.  Comparison of infrared photodissociation in a Fourier transform mass spectrometer with metastable ion decay in a double-focusing mass spectrometer , 1986 .

[13]  J. A. Carroll,et al.  Fragmentation behavior of disaccharides during desorption-ionization , 1992 .

[14]  A. Marshall,et al.  Elimination of z-ejection in Fourier transform ion cyclotron resonance mass spectrometry by radio frequency electric field shimming. , 1990, Analytical chemistry.

[15]  J. Beauchamp,et al.  Intrinsic acid-base properties of molecules. Binding energies of lithium(1+) ion to .pi.- and n-donor bases , 1975 .

[16]  P. Derrick,et al.  Spontaneous fragmentation of cationic polystyrene chains , 1985 .

[17]  J. Leary,et al.  Linkage position determination in oligosaccharides: mass spectrometry (MS/MS) study of lithium-cationized carbohydrates , 1990 .

[18]  H. Veith Alkali-ion-anlagerung in der fd-massenspektrometrie. Kationisierung und protonierung—ionisierungsmethoden bei verwendung nicht aktivierter emitter , 1977 .

[19]  A. Dell,et al.  Fast-atom-bombardment mass-spectrometry for carbohydrate-structure determination , 1983 .

[20]  J. Leary,et al.  Linkage position determination in lithium-cationized disaccharides: tandem mass spectrometry and semiempirical calculations , 1991 .

[21]  H. Beckey,et al.  Study of the kinetics of fast unimolecular decomposition processes and of organic rearrangement reactions by field ionization mass spectrometry , 1969 .

[22]  R. W. Hall,et al.  Linkage position in oligosaccharides by fast atom bombardment ionization, collision-activated dissociation, tandem mass spectrometry and molecular modeling. L-Fucosylp-(.alpha.1.fwdarw.X)-D-N-acetyl-D-glucosaminylp-(.beta.1.fwdarw.3)-D-galactosylp-(.beta.1-O-methyl) where X = 3, 4, or 6 , 1988 .

[23]  J. Futrell,et al.  Modification of a double focusing mass spectrometer for the observation of metastable ions decaying in two field‐free regions , 1971 .

[24]  D. Russell,et al.  Field-corrected ion cell for ion cyclotron resonance , 1990 .

[25]  J. A. Carroll,et al.  Quadrupole Fourier transform mass spectrometry of oligosaccharides , 1991 .

[26]  R. Woodin,et al.  Bimolecular infrared radiative association reactions. Attachment of Li+ to carbonyl compounds in the gas phase , 1979 .

[27]  D. McAdoo,et al.  The effect of ion size on rate of dissociation: RRKM calculations on model large polypeptide ions , 1993, Journal of the American Society for Mass Spectrometry.

[28]  Young Hwan Kim,et al.  Analysis of a mass-analysed ion kinetic energy peak profile for a metastable ion decomposition occurring in a collision cell floated at high voltage , 1991 .

[29]  P. Caravatti,et al.  The ‘infinity cell’: A new trapped‐ion cell with radiofrequency covered trapping electrodes for fourier transform ion cyclotron resonance mass spectrometry , 1991 .

[30]  Unimolecular behavior of very large molecules. 1. Theoretical preliminaries , 1977 .

[31]  B. King,et al.  Mass distribution of ejected molecules and clusters in noncascade sputtering processes , 1985 .

[32]  M. Gross,et al.  Gas-phase interactions of lithium ions and dipeptides , 1990 .

[33]  Dudley H. Williams,et al.  Aspects of the production of FAB and SIMS mass spectra , 1987 .

[34]  A. Dell,et al.  F.A.B.-mass spectrometry of carbohydrates. , 1987, Advances in carbohydrate chemistry and biochemistry.

[35]  M. F. Bean,et al.  Fragmentation of carbohydrates in laser desorption, plasma desorption and fast atom bombardment mass spectrometry , 1989 .

[36]  R. Beavis,et al.  Unimolecular decay measurements of secondary ions from organic molecules by time-of-flight mass spectrometry , 1989 .

[37]  S. Carr,et al.  Enhancement of structural information in FAB ionized carbohydrate samples by neutral gas collision. , 1985, Biomedical mass spectrometry.

[38]  E. W. Schlag,et al.  Production and unimolecular decay rate of internal energy selected molecular ions in a laser reflectron time-of-flight mass spectrometer , 1984 .

[39]  A. Dell,et al.  Structure determination of carbohydrates and glycosphingolipids by fast atom bombardment mass spectrometry , 1983 .

[40]  A. Castleman,et al.  Thermochemical Data on Gas‐Phase Ion‐Molecule Association and Clustering Reactions , 1986 .

[41]  U. Boesl,et al.  Unimolecular Decay of Polyatomic Ions Prepared by Multi-Photon Ionization , 1985 .

[42]  S. Carr,et al.  New mass spectral approaches to complex carbohydrate structure , 1983 .

[43]  E. W. Schlag,et al.  Metastable fragment ions in multi-photon time-of-flight mass spectrometry: Decay channels of the benzene cation , 1983 .

[44]  G. Bouchoux,et al.  Conformational effect on gas‐phase protonation and NH4+ clustering of 1,2‐diols , 1993 .

[45]  Joel F. Liebman,et al.  Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules , 1984 .

[46]  M. Bowers,et al.  Metastable peaks in chemical ionization mass spectrometry: Unimolecular decomposition of protonated methanol ions , 1977 .

[47]  C. Lebrilla,et al.  “Slow” metastable decomposition of oligosaccharide cations produced in an external source fourier transform mass spectrometer , 1993, Journal of the American Society for Mass Spectrometry.