Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields

Many applications in chemistry, biology, and energy storage/conversion research rely on molecular simulations to provide fundamental insight into structural and transport properties of materials with high ionic concentrations. Whether the system is comprised entirely of ions, like ionic liquids, or is a mixture of a polar solvent with a salt, e.g., liquid electrolytes for battery applications, the presence of ions in these materials results in strong local electric fields polarizing solvent molecules and large ions. To predict properties of such systems from molecular simulations often requires either explicit or mean-field inclusion of the influence of polarization on electrostatic interactions. In this manuscript, we review the pros and cons of different treatments of polarization ranging from the mean-field approaches to the most popular explicit polarization models in molecular dynamics simulations of ionic materials. For each method, we discuss their advantages and disadvantages and emphasize key assumptions as well as their adjustable parameters. Strategies for the development of polarizable models are presented with a specific focus on extracting atomic polarizabilities. Finally, we compare simulations using polarizable and nonpolarizable models for several classes of ionic systems, discussing the underlying physics that each approach includes or ignores, implications for implementation and computational efficiency, and the accuracy of properties predicted by these methods compared to experiments.

[1]  Jean-Philip Piquemal,et al.  Pushing the Limits of Multiple-Time-Step Strategies for Polarizable Point Dipole Molecular Dynamics. , 2019, The journal of physical chemistry letters.

[2]  A. Gross,et al.  Modelling the electric double layer at electrode/electrolyte interfaces , 2019, Current Opinion in Electrochemistry.

[3]  Pengyu Y. Ren,et al.  AMOEBA+ Classical Potential for Modeling Molecular Interactions. , 2019, Journal of chemical theory and computation.

[4]  Alexander D. MacKerell,et al.  Toward Prediction of Electrostatic Parameters for Force Fields That Explicitly Treat Electronic Polarization. , 2019, Journal of chemical theory and computation.

[5]  C. Schröder,et al.  Polarizability in ionic liquid simulations causes hidden breakdown of linear response theory. , 2019, Physical chemistry chemical physics : PCCP.

[6]  C. Holm,et al.  ESPResSo 4.0 – an extensible software package for simulating soft matter systems , 2018, The European Physical Journal Special Topics.

[7]  D. Bedrov,et al.  Charge Transport in [Li(tetraglyme)][bis(trifluoromethane) sulfonimide] Solvate Ionic Liquids: Insight from Molecular Dynamics Simulations. , 2018, The journal of physical chemistry. B.

[8]  Paul J van Maaren,et al.  Polarizable Drude Model with s-Type Gaussian or Slater Charge Density for General Molecular Mechanics Force Fields. , 2018, Journal of chemical theory and computation.

[9]  Jean-Philip Piquemal,et al.  Tinker 8: Software Tools for Molecular Design. , 2018, Journal of chemical theory and computation.

[10]  Colin M. Burke,et al.  Polarizable Molecular Dynamics and Experiments of 1,2-Dimethoxyethane Electrolytes with Lithium and Sodium Salts: Structure and Transport Properties. , 2018, The journal of physical chemistry. B.

[11]  S. Kondrat,et al.  Charge Me Slowly, I Am in a Hurry: Optimizing Charge-Discharge Cycles in Nanoporous Supercapacitors. , 2018, ACS nano.

[12]  Alexander D. MacKerell,et al.  Molecular dynamics simulations using the drude polarizable force field on GPUs with OpenMM: Implementation, validation, and benchmarks , 2018, J. Comput. Chem..

[13]  Jesse G. McDaniel,et al.  Influence of Electronic Polarization on the Structure of Ionic Liquids. , 2018, The journal of physical chemistry letters.

[14]  C. Schröder,et al.  Additive polarizabilities of halides in ionic liquids and organic solvents. , 2018, The Journal of chemical physics.

[15]  J. Smiatek,et al.  A polarizable MARTINI model for monovalent ions in aqueous solution. , 2018, The Journal of chemical physics.

[16]  S. Corcelli,et al.  Decompositions of Solvent Response Functions in Ionic Liquids: A Direct Comparison of Equilibrium and Nonequilibrium Methodologies. , 2018, The journal of physical chemistry. B.

[17]  L. M. Varela,et al.  Langevin behavior of the dielectric decrement in ionic liquid water mixtures. , 2018, Physical chemistry chemical physics : PCCP.

[18]  Dominique Nocito,et al.  Massively Parallel Implementation of Divide-and-Conquer Jacobi Iterations Using Particle-Mesh Ewald for Force Field Polarization. , 2018, Journal of chemical theory and computation.

[19]  Y. Maday,et al.  A coherent derivation of the Ewald summation for arbitrary orders of multipoles: The self-terms. , 2018, The Journal of chemical physics.

[20]  O. Borodin,et al.  A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries , 2018 .

[21]  Alexander D. MacKerell,et al.  Optimized Lennard-Jones Parameters for Druglike Small Molecules. , 2018, Journal of chemical theory and computation.

[22]  C. Schröder,et al.  Quantum mechanical determination of atomic polarizabilities of ionic liquids. , 2018, Physical chemistry chemical physics : PCCP.

[23]  Alexander D. MacKerell,et al.  Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator , 2018, J. Chem. Inf. Model..

[24]  Jejoong Yoo,et al.  New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. , 2018, Physical chemistry chemical physics : PCCP.

[25]  Jesse G. McDaniel Polarization Effects in Binary [BMIM+][BF4-]/1,2-Dichloroethane, Acetone, Acetonitrile, and Water Electrolytes. , 2018, The journal of physical chemistry. B.

[26]  E. Maginn,et al.  A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes. , 2018, The Journal of chemical physics.

[27]  K. S. Egorova,et al.  "Solvent-in-salt" systems for design of new materials in chemistry, biology and energy research. , 2018, Chemical Society Reviews.

[28]  S. Rick,et al.  The influence of polarizability and charge transfer on specific ion effects in the dynamics of aqueous salt solutions. , 2018, The Journal of chemical physics.

[29]  Jean-Philip Piquemal,et al.  AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids. , 2018, Journal of chemical theory and computation.

[30]  Alexander D. MacKerell,et al.  Polarizable Empirical Force Field for Halogen-Containing Compounds Based on the Classical Drude Oscillator. , 2018, Journal of chemical theory and computation.

[31]  M. Forsyth,et al.  Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt. , 2018, The Journal of chemical physics.

[32]  M. Watanabe,et al.  Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids. , 2018, The Journal of chemical physics.

[33]  C. Schröder,et al.  Solvation dynamics in polar solvents and imidazolium ionic liquids: failure of linear response approximations† †Electronic supplementary information (ESI) available: Higher order and partial correlation functions, corrections to Gaussian statistics and structure analysis for all systems. See DOI: 10 , 2018, Physical chemistry chemical physics : PCCP.

[34]  F. Uhlig,et al.  First-Principles Parametrization of Polarizable Coarse-Grained Force Fields for Ionic Liquids. , 2018, Journal of chemical theory and computation.

[35]  Nohad Gresh,et al.  Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04531j , 2017, Chemical science.

[36]  P. Jungwirth,et al.  Hydration and Ion Pairing in Aqueous Mg2+ and Zn2+ Solutions: Force-Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations. , 2017, The journal of physical chemistry. B.

[37]  O. Borodin,et al.  Insights into the Structure and Transport of the Lithium, Sodium, Magnesium, and Zinc Bis(trifluoromethansulfonyl)imide Salts in Ionic Liquids , 2017, The Journal of Physical Chemistry C.

[38]  F. Uhlig,et al.  A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  O. Borodin,et al.  Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure. , 2017, Accounts of chemical research.

[40]  Yuesheng Wang,et al.  “Water‐in‐Salt” Electrolyte Makes Aqueous Sodium‐Ion Battery Safe, Green, and Long‐Lasting , 2017 .

[41]  H A Boateng,et al.  Mesh-free hierarchical clustering methods for fast evaluation of electrostatic interactions of point multipoles. , 2017, The Journal of chemical physics.

[42]  O. Borodin,et al.  Charge storage at the nanoscale: understanding the trends from the molecular scale perspective , 2017 .

[43]  O. Borodin,et al.  Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes. , 2017, ACS nano.

[44]  Computational and experimental characterization of a pyrrolidinium-based ionic liquid for electrolyte applications. , 2017, The Journal of chemical physics.

[45]  C. Holm,et al.  The effect of finite pore length on ion structure and charging. , 2017, The Journal of chemical physics.

[46]  Ji Chen,et al.  4.0 V Aqueous Li-Ion Batteries , 2017 .

[47]  Zhi Wang,et al.  Tinker‐OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs , 2017, J. Comput. Chem..

[48]  O. Borodin,et al.  Ramifications of Water-in-Salt Interfacial Structure at Charged Electrodes for Electrolyte Electrochemical Stability. , 2017, The journal of physical chemistry letters.

[49]  Jean-Philip Piquemal,et al.  Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding. , 2017, Journal of chemical theory and computation.

[50]  Jean-Philip Piquemal,et al.  The truncated conjugate gradient (TCG), a non-iterative/fixed-cost strategy for computing polarization in molecular dynamics: Fast evaluation of analytical forces. , 2017, The Journal of chemical physics.

[51]  T. Beck,et al.  Structure and polarization near the Li+ ion in ethylene and propylene carbonates. , 2017, The Journal of chemical physics.

[52]  I. Pethes A comparison of classical interatomic potentials applied to highly concentrated aqueous lithium chloride solutions , 2017, 1707.05403.

[53]  Alexander D. MacKerell,et al.  Mapping the Drude polarizable force field onto a multipole and induced dipole model. , 2017, The Journal of chemical physics.

[54]  Pengyu Y. Ren,et al.  Capturing Many-Body Interactions with Classical Dipole Induction Models , 2017, Journal of chemical theory and computation.

[55]  Walter Thiel,et al.  Importance of MM Polarization in QM/MM Studies of Enzymatic Reactions: Assessment of the QM/MM Drude Oscillator Model. , 2017, Journal of chemical theory and computation.

[56]  Jun Liu,et al.  Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions , 2017 .

[57]  Teresa Head-Gordon,et al.  Accurate Classical Polarization Solution with No Self-Consistent Field Iterations. , 2017, The journal of physical chemistry letters.

[58]  Koen Visscher,et al.  A systematic approach to calibrate a transferable polarizable force field parameter set for primary alcohols , 2017, J. Comput. Chem..

[59]  Dominique Nocito,et al.  Fast divide-and-conquer algorithm for evaluating polarization in classical force fields. , 2017, The Journal of chemical physics.

[60]  A. Pádua Resolving dispersion and induction components for polarisable molecular simulations of ionic liquids. , 2017, The Journal of chemical physics.

[61]  O. Borodin,et al.  On the application of constant electrode potential simulation techniques in atomistic modelling of electric double layers , 2017 .

[62]  M. Foroutan,et al.  A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation , 2017, The European physical journal. E, Soft matter.

[63]  Lars V. Schäfer,et al.  A refined polarizable water model for the coarse-grained MARTINI force field with long-range electrostatic interactions. , 2017, The Journal of chemical physics.

[64]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[65]  Benjamin Stamm,et al.  Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations , 2016, Journal of chemical theory and computation.

[66]  L. M. Varela,et al.  Molecular dynamics analysis of the effect of electronic polarization on the structure and single-particle dynamics of mixtures of ionic liquids and lithium salts. , 2016, The Journal of chemical physics.

[67]  G. Cisneros,et al.  Simulations of the water exchange dynamics of lanthanide ions in 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIm][EtSO4]) and water. , 2016, Physical chemistry chemical physics : PCCP.

[68]  Fernando A. Soto,et al.  Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion. , 2016, Journal of chemical theory and computation.

[69]  Alexander D. MacKerell,et al.  Balancing the Interactions of Mg2+ in Aqueous Solution and with Nucleic Acid Moieties For a Polarizable Force Field Based on the Classical Drude Oscillator Model. , 2016, The journal of physical chemistry. B.

[70]  Andrew C Simmonett,et al.  An empirical extrapolation scheme for efficient treatment of induced dipoles. , 2016, The Journal of chemical physics.

[71]  C. Holm,et al.  Static polarizability effects on counterion distributions near charged dielectric surfaces: A coarse-grained Molecular Dynamics study employing the Drude model , 2016 .

[72]  Lynn Groß,et al.  Local electric dipole moments: A generalized approach , 2016, J. Comput. Chem..

[73]  B. Rotenberg,et al.  Collective water dynamics in the first solvation shell drive the NMR relaxation of aqueous quadrupolar cations. , 2016, The Journal of chemical physics.

[74]  O. Borodin,et al.  A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[75]  B. Laird,et al.  Electric potential calculation in molecular simulation of electric double layer capacitors , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[76]  T. Gould How polarizabilities and C6 coefficients actually vary with atomic volume. , 2016, The Journal of chemical physics.

[77]  Jean-Philip Piquemal,et al.  A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations. , 2016, Journal of chemical theory and computation.

[78]  Pascal T. Merz,et al.  A GROMOS-Compatible Force Field for Small Organic Molecules in the Condensed Phase: The 2016H66 Parameter Set. , 2016, Journal of chemical theory and computation.

[79]  Li-Chiang Lin,et al.  Investigating polarization effects of CO2 adsorption in MgMOF-74 , 2016, J. Comput. Sci..

[80]  T. Beck,et al.  Toward a quantitative theory of Hofmeister phenomena: From quantum effects to thermodynamics , 2016 .

[81]  J. Lawson,et al.  Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers. , 2016, The Journal of chemical physics.

[82]  E. Izgorodina,et al.  Comparison of the Effective Fragment Potential Method with Symmetry-Adapted Perturbation Theory in the Calculation of Intermolecular Energies for Ionic Liquids. , 2016, Journal of Chemical Theory and Computation.

[83]  T. Bučko,et al.  C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1-6 of the Periodic Table. , 2016, Journal of chemical theory and computation.

[84]  Q. Cui,et al.  First-Principles United Atom Force Field for the Ionic Liquid BMIM(+)BF4(-): An Alternative to Charge Scaling. , 2016, The journal of physical chemistry. B.

[85]  J. Piquemal,et al.  Status of the Gaussian Electrostatic Model, a Density-Based Polarizable Force Field , 2016 .

[86]  P. Tavan,et al.  A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water. , 2016, The Journal of chemical physics.

[87]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[88]  Andrew C. Simmonett,et al.  Molecular Multipole Potential Energy Functions for Water. , 2016, The journal of physical chemistry. B.

[89]  Pavel Jungwirth,et al.  Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. , 2016, The journal of physical chemistry. B.

[90]  Alexander D. MacKerell,et al.  An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications , 2016, Chemical reviews.

[91]  Julien Devémy,et al.  Thermalized Drude Oscillators with the LAMMPS Molecular Dynamics Simulator , 2016, J. Chem. Inf. Model..

[92]  Vickie E Lynch,et al.  Molecular Dynamics Force-Field Refinement against Quasi-Elastic Neutron Scattering Data. , 2016, Journal of chemical theory and computation.

[93]  Jennifer L. Knight,et al.  OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. , 2016, Journal of chemical theory and computation.

[94]  Carlos E. S. Bernardes,et al.  Additive polarizabilities in ionic liquids. , 2016, Physical chemistry chemical physics : PCCP.

[95]  Joshua L. Allen,et al.  Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry. , 2016, Physical chemistry chemical physics : PCCP.

[96]  Xiulin Fan,et al.  “Water‐in‐Salt” Electrolyte Enables High‐Voltage Aqueous Lithium‐Ion Chemistries. , 2016 .

[97]  L. Pettersson,et al.  The structural origin of anomalous properties of liquid water , 2015, Nature Communications.

[98]  B. Rotenberg,et al.  Structural Transitions at Ionic Liquid Interfaces. , 2015, The journal of physical chemistry letters.

[99]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[100]  B. Rotenberg,et al.  On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water. , 2015, The Journal of chemical physics.

[101]  S. Pei,et al.  Molecular response of 1-butyl-3-methylimidazolium dicyanamide ionic liquid at the graphene electrode interface investigated by sum frequency generation spectroscopy and molecular dynamics simulations , 2015 .

[102]  Teresa Head-Gordon,et al.  An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction. , 2015, The Journal of chemical physics.

[103]  K. Breitsprecher,et al.  Electrode Models for Ionic Liquid-Based Capacitors , 2015 .

[104]  D. Bedrov,et al.  Capacitive Energy Storage: Current and Future Challenges. , 2015, The journal of physical chemistry letters.

[105]  Andrew C Simmonett,et al.  Efficient treatment of induced dipoles. , 2015, The Journal of chemical physics.

[106]  Pengyu Y. Ren,et al.  Development of an AMOEBA water model using GEM distributed multipoles , 2015, Theoretical Chemistry Accounts.

[107]  E. Fileti,et al.  The force field for imidazolium-based ionic liquids: Novel anions with polar residues , 2015 .

[108]  Alexander D. MacKerell,et al.  Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model , 2015, J. Comput. Chem..

[109]  Entropic Mechanism for the Lower Critical Solution Temperature of Poly(ethylene oxide) in a Room Temperature Ionic Liquid , 2015 .

[110]  A. Mohammadi,et al.  Prediction of refractive indices of ionic liquids – A quantitative structure-property relationship based model , 2015 .

[111]  D. Bedrov,et al.  Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes. , 2015, ACS nano.

[112]  R. Atkin,et al.  Structure and nanostructure in ionic liquids. , 2015, Chemical reviews.

[113]  A. Heuer,et al.  Comparing induced point-dipoles and Drude oscillators. , 2015, Physical chemistry chemical physics : PCCP.

[114]  Benjamin Stamm,et al.  Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: II. Toward massively parallel computations using smooth particle mesh Ewald. , 2015, Journal of chemical theory and computation.

[115]  S. Balasubramanian,et al.  A Refined All-Atom Potential for Imidazolium-Based Room Temperature Ionic Liquids: Acetate, Dicyanamide, and Thiocyanate Anions. , 2015, The journal of physical chemistry. B.

[116]  J. Pfaendtner,et al.  The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. , 2015, The journal of physical chemistry. B.

[117]  Miriam Kohagen,et al.  Exploring Ion-Ion Interactions in Aqueous Solutions by a Combination of Molecular Dynamics and Neutron Scattering. , 2015, The journal of physical chemistry letters.

[118]  V. Chaban,et al.  Nonadditivity of Temperature Dependent Interactions in Inorganic Ionic Clusters , 2015 .

[119]  Alexander D. MacKerell,et al.  Competition among Li(+), Na(+), K(+), and Rb(+) monovalent ions for DNA in molecular dynamics simulations using the additive CHARMM36 and Drude polarizable force fields. , 2015, The journal of physical chemistry. B.

[120]  M. Sega,et al.  Dielectric and terahertz spectroscopy of polarizable and nonpolarizable water models: a comparative study. , 2015, The journal of physical chemistry. A.

[121]  Jay W Ponder,et al.  Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model. , 2015, The journal of physical chemistry. B.

[122]  Benjamin Stamm,et al.  Polarizable molecular dynamics in a polarizable continuum solvent. , 2015, Journal of chemical theory and computation.

[123]  Alexander D. MacKerell,et al.  Differential Impact of the Monovalent Ions Li+, Na+, K+, and Rb+ on DNA Conformational Properties , 2014, The journal of physical chemistry letters.

[124]  Iuliia V. Voroshylova,et al.  Systematic refinement of Canongia Lopes-Pádua force field for pyrrolidinium-based ionic liquids. , 2014, The journal of physical chemistry. B.

[125]  J. Coles,et al.  The fast multipole method and point dipole moment polarizable force fields. , 2014, The Journal of chemical physics.

[126]  D. Bedrov,et al.  Ionic liquids at charged surfaces: Insight from molecular simulations , 2015 .

[127]  Péter T Kiss,et al.  Efficient Handling of Gaussian Charge Distributions: An Application to Polarizable Molecular Models. , 2014, Journal of chemical theory and computation.

[128]  Jean-Philip Piquemal,et al.  Hydration gibbs free energies of open and closed shell trivalent lanthanide and actinide cations from polarizable molecular dynamics , 2014, Journal of Molecular Modeling.

[129]  S. Passerini Ionic Liquid Electrolytes , 2014 .

[130]  O. Borodin,et al.  Computational and experimental investigation of Li-doped ionic liquid electrolytes: [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4]. , 2014, The journal of physical chemistry. B.

[131]  C. Millot,et al.  Distributed polarizability models for imidazolium-based ionic liquids. , 2014, The journal of physical chemistry. A.

[132]  V. Chaban,et al.  Polarization versus temperature in pyridinium ionic liquids. , 2014, The journal of physical chemistry. B.

[133]  J. Brady,et al.  Molecular Dynamics Simulations of the Ionic Liquid 1-n-Butyl-3-Methylimidazolium Chloride and Its Binary Mixtures with Ethanol. , 2014, Journal of chemical theory and computation.

[134]  Alexander D. MacKerell,et al.  Recent Advances in Polarizable Force Fields for Macromolecules: Microsecond Simulations of Proteins Using the Classical Drude Oscillator Model , 2014, The journal of physical chemistry letters.

[135]  Iuliia V. Voroshylova,et al.  Atomistic force field for pyridinium-based ionic liquids: reliable transport properties. , 2014, The journal of physical chemistry. B.

[136]  O. Borodin,et al.  Interfacial structure and dynamics of the lithium alkyl dicarbonate SEI components in contact with the lithium battery electrolyte , 2014 .

[137]  Jesse G. McDaniel,et al.  First-Principles, Physically Motivated Force Field for the Ionic Liquid [BMIM][BF4]. , 2014, The journal of physical chemistry letters.

[138]  E. Fileti,et al.  The Scaled-Charge Additive Force Field for Amino Acid Based Ionic Liquids , 2014, 1407.5852.

[139]  Nohad Gresh,et al.  S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations. , 2014, The journal of physical chemistry. A.

[140]  G. Cisneros,et al.  Development of AMOEBA force field for 1,3-dimethylimidazolium based ionic liquids. , 2014, The journal of physical chemistry. B.

[141]  Alexander D. MacKerell,et al.  Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field , 2014, The journal of physical chemistry. B.

[142]  O. Steinhauser,et al.  Dielectric spectra of ionic liquids and their conversion to solvation dynamics: a detailed computational analysis of polarizable systems. , 2014, Physical chemistry chemical physics : PCCP.

[143]  Andrew C Simmonett,et al.  An efficient algorithm for multipole energies and derivatives based on spherical harmonics and extensions to particle mesh Ewald. , 2014, The Journal of chemical physics.

[144]  M. Skaf,et al.  Polarizability effects on the structure and dynamics of ionic liquids. , 2014, The Journal of chemical physics.

[145]  S. Balasubramanian,et al.  Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: a refined force field. , 2014, The journal of physical chemistry. B.

[146]  Benjamin Stamm,et al.  Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct Space Computations , 2014 .

[147]  A. Kornyshev,et al.  Ionic liquids at electrified interfaces. , 2014, Chemical reviews.

[148]  Jean-Philip Piquemal,et al.  GEM*: A Molecular Electronic Density-Based Force Field for Molecular Dynamics Simulations. , 2014, Journal of chemical theory and computation.

[149]  Alexey A. Sokol,et al.  ChemShell—a modular software package for QM/MM simulations , 2014 .

[150]  Weishan Li,et al.  Influence of temperature on the capacitance of ionic liquid electrolytes on charged surfaces. , 2014, Physical chemistry chemical physics : PCCP.

[151]  O. Borodin,et al.  A combined theoretical and experimental study of the influence of different anion ratios on lithium ion dynamics in ionic liquids. , 2014, The journal of physical chemistry. B.

[152]  P. Tavan,et al.  Polarizable six-point water models from computational and empirical optimization. , 2014, The journal of physical chemistry. B.

[153]  Y. Li,et al.  The electronegativity equalization method fused with molecular mechanics: a fluctuating charge and flexible body potential function for [Emim][Gly] ionic liquids. , 2014, Physical chemistry chemical physics : PCCP.

[154]  Daniel M. Seo,et al.  Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms , 2014 .

[155]  O. Borodin,et al.  Computational and Experimental Investigation of Li-Doped Ionic Liquid Electrolytes : , 2014 .

[156]  Benjamin Stamm,et al.  Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II.Towards Massively Parallel Computations using Smooth Particle Mesh Ewald. , 2014, Journal of chemical theory and computation.

[157]  Alexander D. MacKerell,et al.  Force Field for Peptides and Proteins based on the Classical Drude Oscillator. , 2013, Journal of chemical theory and computation.

[158]  B Rotenberg,et al.  Highly confined ions store charge more efficiently in supercapacitors , 2013, Nature Communications.

[159]  Axel Arnold,et al.  Efficient Algorithms for Electrostatic Interactions Including Dielectric Contrasts , 2013, Entropy.

[160]  Marcella Iannuzzi,et al.  Simulation of Adsorption Processes at Metallic Interfaces: An Image Charge Augmented QM/MM Approach. , 2013, Journal of chemical theory and computation.

[161]  P. Madden,et al.  Computer simulations of ionic liquids at electrochemical interfaces. , 2013, Physical chemistry chemical physics : PCCP.

[162]  Alexander D. MacKerell,et al.  A comparative Kirkwood-Buff study of aqueous methanol solutions modeled by the CHARMM additive and Drude polarizable force fields. , 2013, The journal of physical chemistry. B.

[163]  Alexander D. MacKerell,et al.  Kirkwood-Buff analysis of aqueous N-methylacetamide and acetamide solutions modeled by the CHARMM additive and Drude polarizable force fields. , 2013, The Journal of chemical physics.

[164]  Pengyu Y. Ren,et al.  Systematic improvement of a classical molecular model of water. , 2013, The journal of physical chemistry. B.

[165]  Benoît Roux,et al.  AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ON AB INITIO TARGET DATA. , 2013, Journal of chemical theory and computation.

[166]  Y. Gogotsi,et al.  Increasing Energy Storage in Electrochemical Capacitors with Ionic Liquid Electrolytes and Nanostructured Carbon Electrodes , 2013 .

[167]  A. Misquitta,et al.  Charge Transfer from Regularized Symmetry-Adapted Perturbation Theory. , 2013, Journal of chemical theory and computation.

[168]  Benoît Roux,et al.  A polarizable force field of dipalmitoylphosphatidylcholine based on the classical Drude model for molecular dynamics simulations of lipids. , 2013, The journal of physical chemistry. B.

[169]  P. Kiss,et al.  A systematic development of a polarizable potential of water. , 2013, The Journal of chemical physics.

[170]  O. Steinhauser,et al.  Polarization effects on the solvation dynamics of coumarin C153 in ionic liquids: components and their cross-correlations. , 2013, The Journal of chemical physics.

[171]  O. Steinhauser,et al.  The effect of Thole functions on the simulation of ionic liquids with point induced dipoles at various densities. , 2013, The Journal of chemical physics.

[172]  C. Cramer,et al.  Reduced and quenched polarizabilities of interior atoms in molecules , 2013 .

[173]  Peter T. Cummings,et al.  Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature , 2013 .

[174]  P. Jungwirth,et al.  Ion pairing in aqueous lithium salt solutions with monovalent and divalent counter-anions. , 2013, The journal of physical chemistry. A.

[175]  O. Borodin,et al.  Molecular Dynamics Simulations and Experimental Study of Lithium Ion Transport in Dilithium Ethylene Dicarbonate , 2013 .

[176]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[177]  T Verstraelen,et al.  ACKS2: atom-condensed Kohn-Sham DFT approximated to second order. , 2013, The Journal of chemical physics.

[178]  Daniel P. Abraham,et al.  Atomistic Modeling of the Electrode–Electrolyte Interface in Li-Ion Energy Storage Systems: Electrolyte Structuring , 2013 .

[179]  Maggel Deetlefs,et al.  Polarisabilities of alkylimidazolium ionic liquids. , 2013, Physical chemistry chemical physics : PCCP.

[180]  Alexander D. MacKerell,et al.  Simulation study of ion pairing in concentrated aqueous salt solutions with a polarizable force field. , 2013, Faraday discussions.

[181]  Alexander D. MacKerell,et al.  Six-site polarizable model of water based on the classical Drude oscillator. , 2013, The Journal of chemical physics.

[182]  P. Simon,et al.  Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces? , 2013, The journal of physical chemistry letters.

[183]  Yixuan Gu,et al.  Thole model for ionic liquid polarizability. , 2013, The journal of physical chemistry. A.

[184]  Daniel M. Seo,et al.  Electrolyte Solvation and Ionic Association III. Acetonitrile-Lithium Salt Mixtures–Transport Properties , 2013 .

[185]  Daniel M. Seo,et al.  Electrolyte Solvation and Ionic Association IV. Acetonitrile-Lithium Difluoro(oxalato)borate (LiDFOB) Mixtures , 2013 .

[186]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[187]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[188]  Oleg Borodin,et al.  Electrode/Electrolyte Interface in Sulfolane-Based Electrolytes for Li Ion Batteries: A Molecular Dynamics Simulation Study , 2012 .

[189]  Walter Thiel,et al.  Solvent Boundary Potentials for Hybrid QM/MM Computations Using Classical Drude Oscillators: A Fully Polarizable Model. , 2012, Journal of chemical theory and computation.

[190]  Steven W. Rick,et al.  The effects of charge transfer on the aqueous solvation of ions. , 2012, The Journal of chemical physics.

[191]  Ray Luo,et al.  Development of polarizable models for molecular mechanical calculations. 3. Polarizable water models conforming to Thole polarization screening schemes. , 2012, The journal of physical chemistry. B.

[192]  Katharina Wendler,et al.  Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[193]  D. Bedrov,et al.  Nanopatterning of Electrode Surfaces as a Potential Route to Improve the Energy Density of Electric Double-Layer Capacitors: Insight from Molecular Simulations. , 2012, The journal of physical chemistry letters.

[194]  J. Molina,et al.  A transferable ab initio based force field for aqueous ions. , 2012, The Journal of chemical physics.

[195]  P. Taberna,et al.  On the molecular origin of supercapacitance in nanoporous carbon electrodes. , 2012, Nature materials.

[196]  Nohad Gresh,et al.  Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies , 2012, Theoretical Chemistry Accounts.

[197]  A. Pádua,et al.  CL&P: A generic and systematic force field for ionic liquids modeling , 2012, Theoretical Chemistry Accounts.

[198]  P. Madden,et al.  Including many-body effects in models for ionic liquids , 2012, Theoretical Chemistry Accounts.

[199]  David J Huggins,et al.  Correlations in liquid water for the TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald, and SWM4-NDP models. , 2012, The Journal of chemical physics.

[200]  Christian Schröder,et al.  Comparing reduced partial charge models with polarizable simulations of ionic liquids. , 2012, Physical chemistry chemical physics : PCCP.

[201]  Y. Pereverzev,et al.  A new model of chemical bonding in ionic melts. , 2012, The Journal of chemical physics.

[202]  Daniel M. Seo,et al.  I. Acetonitrile-Lithium Salt Mixtures: Intermediate and Highly Associated Salts , 2012 .

[203]  Daniel M. Seo,et al.  Electrolyte Solvation and Ionic Association II. Acetonitrile-Lithium Salt Mixtures: Highly Dissociated Salts , 2012 .

[204]  Daniel M. Seo,et al.  Electrolyte Solvation and Ionic Association , 2012 .

[205]  Xiao Zhu,et al.  Recent developments and applications of the CHARMM force fields , 2012, Wiley interdisciplinary reviews. Computational molecular science.

[206]  N. Ernsting,et al.  Measurements of the complete solvation response of coumarin 153 in ionic liquids and the accuracy of simple dielectric continuum predictions. , 2012, Faraday discussions.

[207]  Peter T. Cummings,et al.  Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size , 2011 .

[208]  Oleg V Prezhdo,et al.  A new force field model of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and acetonitrile mixtures. , 2011, Physical chemistry chemical physics : PCCP.

[209]  P. Madden,et al.  Polarization effects in ionic solids and melts , 2011, 1502.07534.

[210]  B. Kirchner,et al.  Locality and Fluctuations: Trends in Imidazolium-Based Ionic Liquids and Beyond. , 2011, Journal of chemical theory and computation.

[211]  A. V. van Duin,et al.  A reactive force field for aqueous-calcium carbonate systems. , 2011, Physical chemistry chemical physics : PCCP.

[212]  S. Seki,et al.  Nuclear magnetic resonance studies on the rotational and translational motions of ionic liquids composed of 1-ethyl-3-methylimidazolium cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. , 2011, The Journal of chemical physics.

[213]  O. Borodin,et al.  On the Influence of Surface Topography on the Electric Double Layer Structure and Differential Capacitance of Graphite/Ionic Liquid Interfaces , 2011 .

[214]  V. Chaban Polarizability versus mobility: atomistic force field for ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.

[215]  Adri C. T. van Duin,et al.  Atomistic-scale simulations of chemical reactions: Bridging from quantum chemistry to engineering , 2011 .

[216]  C. Schröder Collective translational motions and cage relaxations in molecular ionic liquids. , 2011, The Journal of chemical physics.

[217]  O. Steinhauser,et al.  The influence of polarizability on the dielectric spectrum of the ionic liquid 1-ethyl-3-methylimidazolium triflate. , 2011, Physical chemistry chemical physics : PCCP.

[218]  N Georgi,et al.  A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. , 2011, Physical chemistry chemical physics : PCCP.

[219]  A. Stone Electrostatic damping functions and the penetration energy. , 2011, The journal of physical chemistry. A.

[220]  O. Borodin,et al.  Development of a Polarizable Force Field for Molecular Dynamics Simulations of Poly (Ethylene Oxide) in Aqueous Solution. , 2011, Journal of chemical theory and computation.

[221]  L. Pastewka,et al.  Charge-transfer model for carbonaceous electrodes in polar environments , 2011 .

[222]  O. Borodin,et al.  Molecular simulations of the electric double layer structure, differential capacitance, and charging kinetics for N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide at graphite electrodes. , 2011, The journal of physical chemistry. B.

[223]  Wei Zhao,et al.  Performance of quantum chemically derived charges and persistence of ion cages in ionic liquids. A molecular dynamics simulations study of 1-n-butyl-3-methylimidazolium bromide. , 2011, The journal of physical chemistry. B.

[224]  Alexander D. MacKerell,et al.  Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model. , 2011, The journal of physical chemistry. B.

[225]  Sheng Dai,et al.  The importance of ion size and electrode curvature on electrical double layers in ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.

[226]  Klaus Schulten,et al.  High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. , 2011, The journal of physical chemistry letters.

[227]  N. Gresh,et al.  Role of Cation Polarization in holo- and hemi-Directed [Pb(H2O)n](2+) Complexes and Development of a Pb(2+) Polarizable Force Field. , 2011, Journal of chemical theory and computation.

[228]  J. Molina,et al.  Ions in solutions: Determining their polarizabilities from first-principles. , 2011, The Journal of chemical physics.

[229]  Marco Masia,et al.  The polarizable point dipoles method with electrostatic damping: implementation on a model system. , 2010, The Journal of chemical physics.

[230]  O. Steinhauser,et al.  Simulating polarizable molecular ionic liquids with Drude oscillators. , 2010, The Journal of chemical physics.

[231]  Oleg Borodin,et al.  Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes. , 2010, Journal of the American Chemical Society.

[232]  C. Wick,et al.  Molecular mechanism of CO2 and SO2 molecules binding to the air/liquid interface of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid: a molecular dynamics study with polarizable potential models. , 2010, The journal of physical chemistry. B.

[233]  Erik L. G. Wernersson,et al.  Effect of Water Polarizability on the Properties of Solutions of Polyvalent Ions: Simulations of Aqueous Sodium Sulfate with Different Force Fields. , 2010, Journal of chemical theory and computation.

[234]  Xiao Zhu,et al.  Polarizable empirical force field for sulfur‐containing compounds based on the classical Drude oscillator model , 2010, J. Comput. Chem..

[235]  Jean-Philip Piquemal,et al.  Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. , 2010, Journal of Chemical Theory and Computation.

[236]  P. Madden,et al.  Potential-induced ordering transition of the adsorbed layer at the ionic liquid/electrified metal interface. , 2010, The journal of physical chemistry. B.

[237]  Durba Sengupta,et al.  Polarizable Water Model for the Coarse-Grained MARTINI Force Field , 2010, PLoS Comput. Biol..

[238]  B. Sumpter,et al.  Structure and dynamics of electrical double layers in organic electrolytes. , 2010, Physical chemistry chemical physics : PCCP.

[239]  Craig Knox,et al.  On the structure of ionic liquids: comparisons between electronically polarizable and nonpolarizable models I. , 2010, The journal of physical chemistry. B.

[240]  O. Borodin,et al.  Molecular dynamics simulation and pulsed-field gradient NMR studies of bis(fluorosulfonyl)imide (FSI) and bis[(trifluoromethyl)sulfonyl]imide (TFSI)-based ionic liquids. , 2010, The journal of physical chemistry. B.

[241]  Christian Holm,et al.  An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries. , 2010, The Journal of chemical physics.

[242]  L. Delle Site,et al.  Ionic charge reduction and atomic partial charges from first-principles calculations of 1,3-dimethylimidazolium chloride. , 2010, The journal of physical chemistry. B.

[243]  M. Ribeiro Polarization effects in molecular dynamics simulations of glass-formers Ca(NO3)2 x nH2O, n=4, 6, and 8. , 2010, The Journal of chemical physics.

[244]  O. Borodin,et al.  Influence of polarization on structural, thermodynamic, and dynamic properties of ionic liquids obtained from molecular dynamics simulations. , 2010, The journal of physical chemistry. B.

[245]  Alexander D. MacKerell,et al.  Accurate Calculation of Hydration Free Energies using Pair-Specific Lennard-Jones Parameters in the CHARMM Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[246]  Alexander D. MacKerell,et al.  Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for ethers , 2010, Journal of molecular modeling.

[247]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[248]  Cui Liu,et al.  Development of a Polarizable Force Field Using Multiple Fluctuating Charges per Atom. , 2010, Journal of chemical theory and computation.

[249]  Alexander D. MacKerell,et al.  Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[250]  O. Borodin,et al.  Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. , 2010, Physical chemistry chemical physics : PCCP.

[251]  Kenneth D Jordan,et al.  A second generation distributed point polarizable water model. , 2010, The Journal of chemical physics.

[252]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[253]  B. Roux,et al.  Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions , 2010 .

[254]  Rui Zhang,et al.  The QM‐MM interface for CHARMM‐deMon , 2010, J. Comput. Chem..

[255]  Craig Knox,et al.  On the dynamics of ionic liquids: comparisons between electronically polarizable and nonpolarizable models II. , 2010, The journal of physical chemistry. B.

[256]  Jean-Philip Piquemal,et al.  Gaussian Multipole Model (GMM). , 2010, Journal of chemical theory and computation.

[257]  Anna-Pitschna E. Kunz,et al.  Development of a nonlinear classical polarization model for liquid water and aqueous solutions: COS/D. , 2009, The journal of physical chemistry. A.

[258]  Y. Kameda,et al.  Ion–ion interactions of LiPF6 and LiBF4 in propylene carbonate solutions , 2009 .

[259]  Oleg Borodin,et al.  Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids. , 2009, The journal of physical chemistry. B.

[260]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[261]  O. Borodin Polarizable force field development and molecular dynamics simulations of ionic liquids. , 2009, The journal of physical chemistry. B.

[262]  Piotr Cieplak,et al.  Polarization effects in molecular mechanical force fields , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[263]  H. Shirota,et al.  Atom substitution effects of [XF6]- in ionic liquids. 2. Theoretical study. , 2009, The journal of physical chemistry. B.

[264]  Masuhiro Mikami,et al.  Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions. , 2009, The journal of physical chemistry. B.

[265]  A. Stone,et al.  Charge-transfer in Symmetry-Adapted Perturbation Theory , 2009 .

[266]  Mark S. Gordon,et al.  Damping functions in the effective fragment potential method , 2009 .

[267]  D. Macfarlane,et al.  On the components of the dielectric constants of ionic liquids: ionic polarization? , 2009, Physical chemistry chemical physics : PCCP.

[268]  P. Madden,et al.  Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials. , 2009, The Journal of chemical physics.

[269]  O. Borodin,et al.  Viscosity of a room temperature ionic liquid: predictions from nonequilibrium and equilibrium molecular dynamics simulations. , 2009, Journal of Physical Chemistry B.

[270]  A. Stuchebrukhov,et al.  Electronic continuum model for molecular dynamics simulations. , 2009, The Journal of chemical physics.

[271]  Oleg Borodin,et al.  Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. , 2009, The journal of physical chemistry. B.

[272]  Axel Arnold,et al.  Electrostatic layer correction with image charges: a linear scaling method to treat slab 2D+h systems with dielectric interfaces. , 2008, The Journal of chemical physics.

[273]  O. Steinhauser,et al.  On the collective network of ionic liquid/water mixtures. II. Decomposition and interpretation of dielectric spectra. , 2008, The Journal of chemical physics.

[274]  O. Borodin,et al.  A comparison of ether- and alkyl-derivatized imidazolium-based room-temperature ionic liquids: a molecular dynamics simulation study. , 2008, Physical chemistry chemical physics : PCCP.

[275]  J. Kolafa,et al.  Aqueous solutions of ionic liquids: study of the solution/vapor interface using molecular dynamics simulations. , 2008, Physical chemistry chemical physics : PCCP.

[276]  Asbjørn Holt,et al.  Inclusion of the quadrupole moment when describing polarization. The effect of the dipole‐quadrupole polarizability , 2008, J. Comput. Chem..

[277]  C. Hardacre,et al.  Application of static charge transfer within an ionic-liquid force field and its effect on structure and dynamics. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[278]  M. Klein,et al.  Modelling room temperature ionic liquids. , 2008, Chemical communications.

[279]  Jiahao Chen,et al.  A unified theoretical framework for fluctuating-charge models in atom-space and in bond-space. , 2008, The Journal of chemical physics.

[280]  Yingkai Zhang,et al.  Interfacing ab initio Quantum Mechanical Method with Classical Drude Osillator Polarizable Model for Molecular Dynamics Simulation of Chemical Reactions. , 2008, Journal of chemical theory and computation.

[281]  Xuhui Huang,et al.  Molecular dynamics study of the temperature-dependent Optical Kerr effect spectra and intermolecular dynamics of room temperature ionic liquid 1-methoxyethylpyridinium dicyanoamide. , 2008, The journal of physical chemistry. B.

[282]  An application of the consistent charge equilibration (CQEq) method to guanidinium ionic liquid systems , 2008 .

[283]  Stewart K. Reed,et al.  Electrochemical charge transfer at a metallic electrode: a simulation study. , 2008, The Journal of chemical physics.

[284]  O. Borodin,et al.  Interfacial properties of semifluorinated alkane diblock copolymers. , 2008, The Journal of chemical physics.

[285]  Alexander D. MacKerell,et al.  Understanding the dielectric properties of liquid amides from a polarizable force field. , 2008, The journal of physical chemistry. B.

[286]  G. Voth,et al.  Molecular dynamics simulation of the energetic room-temperature ionic liquid, 1-hydroxyethyl-4-amino-1,2,4-triazolium nitrate (HEATN). , 2008, The journal of physical chemistry. B.

[287]  Paul Tavan,et al.  The polarizability of point-polarizable water models: density functional theory/molecular mechanics results. , 2008, The journal of physical chemistry. B.

[288]  Ralf Ludwig,et al.  Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[289]  Wei Zhao,et al.  A Refined All-Atom Model for the Ionic Liquid 1-n-Butyl 3-Methylimidazolium bis(Trifluoromethylsulfonyl)imide [bmim][Tf2N] , 2007 .

[290]  Alexander D. MacKerell,et al.  Direct comparisons of experimental and calculated neutron structure factors of pure solvents as a method for force field validation. , 2007, The journal of physical chemistry. B.

[291]  W. V. van Gunsteren,et al.  On the Calculation of Atomic Forces in Classical Simulation Using the Charge-on-Spring Method To Explicitly Treat Electronic Polarization. , 2007, Journal of chemical theory and computation.

[292]  Nohad Gresh,et al.  Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. , 2007, Journal of chemical theory and computation.

[293]  Axel Arnold,et al.  ICMMM2D: an accurate method to include planar dielectric interfaces via image charge summation. , 2007, The Journal of chemical physics.

[294]  L. Radom,et al.  An evaluation of harmonic vibrational frequency scale factors. , 2007, The journal of physical chemistry. A.

[295]  R. Wheatley,et al.  First-principles calculation of local atomic polarizabilities. , 2007, The journal of physical chemistry. A.

[296]  S. Balasubramanian,et al.  Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. , 2007, The Journal of chemical physics.

[297]  M. Ribeiro,et al.  Molecular dynamics simulation of the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide. , 2007, The journal of physical chemistry. B.

[298]  Alexander D. MacKerell,et al.  Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model. , 2007, Journal of chemical theory and computation.

[299]  Nohad Gresh,et al.  Key role of the polarization anisotropy of water in modeling classical polarizable force fields. , 2007, The journal of physical chemistry. A.

[300]  Rustam Z. Khaliullin,et al.  Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. , 2007, The journal of physical chemistry. A.

[301]  W. Gansterer,et al.  Impact of anisotropy on the structure and dynamics of ionic liquids: a computational study of 1-butyl-3-methyl-imidazolium trifluoroacetate. , 2007, The Journal of chemical physics.

[302]  E. Maginn,et al.  Calculating the enthalpy of vaporization for ionic liquid clusters. , 2007, The journal of physical chemistry. B.

[303]  Hongyan He,et al.  A force field for molecular simulation of tetrabutylphosphonium amino acid ionic liquids. , 2007, The journal of physical chemistry. B.

[304]  J. Kolafa,et al.  Molecular dynamics study of conductivity of ionic liquids: The Kohlrausch law , 2007 .

[305]  G. Wipff,et al.  Solvation of uranium hexachloro complexes in room-temperature ionic liquids. A molecular dynamics investigation in two liquids. , 2007, The journal of physical chemistry. B.

[306]  O. Borodin,et al.  Li+ Transport Mechanism in Oligo(Ethylene Oxide)s Compared to Carbonates , 2007 .

[307]  Jiahao Chen,et al.  QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics , 2007, 0807.2068.

[308]  Nohad Gresh,et al.  Toward a Separate Reproduction of the Contributions to the Hartree-Fock and DFT Intermolecular Interaction Energies by Polarizable Molecular Mechanics with the SIBFA Potential. , 2007, Journal of chemical theory and computation.

[309]  R. J. Boyd,et al.  An Introduction to the Quantum Theory of Atoms in Molecules , 2007 .

[310]  Alexander D. MacKerell,et al.  Polarizable empirical force field for aromatic compounds based on the classical drude oscillator. , 2007, The journal of physical chemistry. B.

[311]  O. Steinhauser,et al.  Collective rotational dynamics in ionic liquids: a computational and experimental study of 1-butyl-3-methyl-imidazolium tetrafluoroborate. , 2007, The Journal of chemical physics.

[312]  Stewart K. Reed,et al.  Electrochemical interface between an ionic liquid and a model metallic electrode. , 2007, The Journal of chemical physics.

[313]  Chérif F. Matta,et al.  The Quantum Theory of Atoms in Molecules , 2007 .

[314]  D. Macfarlane,et al.  Structure and dynamics of the plastic crystal tetramethylammonium dicyanamide—a molecular dynamics study☆ , 2006 .

[315]  T. Darden,et al.  Generalization of the Gaussian electrostatic model: extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods. , 2006, The Journal of chemical physics.

[316]  G. D. Smith,et al.  Li+ transport in lithium sulfonylimide-oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI. , 2006, The journal of physical chemistry. B.

[317]  Benoît Roux,et al.  Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2006, Journal of chemical theory and computation.

[318]  M. Bellissent-Funel,et al.  Local order in aqueous NaCl solutions and pure water: X-ray scattering and molecular dynamics simulations study. , 2006, The journal of physical chemistry. B.

[319]  Paul E. Smith,et al.  A Kirkwood‐Buff derived force field for amides , 2006, J. Comput. Chem..

[320]  Alan Grossfield,et al.  Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. , 2006, The journal of physical chemistry. B.

[321]  E. Maginn,et al.  Molecular simulation study of some thermophysical and transport properties of triazolium-based ionic liquids. , 2006, The journal of physical chemistry. B.

[322]  A. Pádua,et al.  Nonpolar, polar, and associating solutes in ionic liquids. , 2006, The journal of physical chemistry. B.

[323]  Pengyu Y. Ren,et al.  Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure. , 2006, The Journal of chemical physics.

[324]  Oleg Borodin,et al.  Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids. , 2006, The journal of physical chemistry. B.

[325]  L. Vega,et al.  Transport properties of the ionic liquid 1-ethyl-3-methylimidazolium chloride from equilibrium molecular dynamics simulation. The effect of temperature. , 2006, The journal of physical chemistry. B.

[326]  Parametrization of 1-butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field. , 2006, The journal of physical chemistry. B.

[327]  A. Soper,et al.  Liquid structure of the ionic liquid 1,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]amide. , 2006, The journal of physical chemistry. B.

[328]  Yudai Huang,et al.  Triethyl orthoformate as a new film-forming electrolytes solvent for lithium-ion batteries with graphite anodes , 2006 .

[329]  Mark S Gordon,et al.  Charge transfer interaction in the effective fragment potential method. , 2006, The Journal of chemical physics.

[330]  Oleg Borodin,et al.  Structure and dynamics of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid from molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[331]  Ron O Dror,et al.  The midpoint method for parallelization of particle simulations. , 2006, The Journal of chemical physics.

[332]  T. Welton,et al.  Cooperativity in ionic liquids. , 2006, The Journal of chemical physics.

[333]  L. Dang,et al.  Recent advances in molecular simulations of ion solvation at liquid interfaces. , 2006, Chemical reviews.

[334]  A. Pádua,et al.  Using spectroscopic data on imidazolium cation conformations to test a molecular force field for ionic liquids. , 2006, The journal of physical chemistry. B.

[335]  T. Darden,et al.  Towards a force field based on density fitting. , 2006, The Journal of chemical physics.

[336]  Oleg Borodin,et al.  Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents. , 2006, The journal of physical chemistry. B.

[337]  O. Borodin,et al.  Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped Oligoether, polyether, and carbonate-based electrolytes. , 2006, The journal of physical chemistry. B.

[338]  Charles L. Brooks,et al.  Fluctuating charge force fields: recent developments and applications from small molecules to macromolecular biological systems , 2006 .

[339]  F. Calvo,et al.  Theoretical study of the hydrated Gd3+ ion: structure, dynamics, and charge transfer. , 2006, The Journal of chemical physics.

[340]  O. Borodin,et al.  LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[341]  A. Pádua,et al.  Nanostructural organization in ionic liquids. , 2006, The journal of physical chemistry. B.

[342]  B. Roux,et al.  Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. , 2006, The journal of physical chemistry. B.

[343]  Alexander D. MacKerell,et al.  A polarizable model of water for molecular dynamics simulations of biomolecules , 2006 .

[344]  Paul E. Smith,et al.  Equilibrium dialysis data and the relationships between preferential interaction parameters for biological systems in terms of Kirkwood-Buff integrals. , 2006, The journal of physical chemistry. B.

[345]  Oleg Borodin,et al.  Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations , 2006 .

[346]  R. Snurr,et al.  Molecular modeling and experimental studies of the thermodynamic and transport properties of pyridinium-based ionic liquids. , 2006, The journal of physical chemistry. B.

[347]  A. Stone,et al.  Distributed polarizabilities obtained using a constrained density-fitting algorithm. , 2006, The Journal of chemical physics.

[348]  G. Voth,et al.  Structure of the liquid-vacuum interface of room-temperature ionic liquids: a molecular dynamics study. , 2006, The journal of physical chemistry. B.

[349]  P. Hunt The simulation of imidazolium-based ionic liquids , 2006 .

[350]  M. D. Del Pópolo,et al.  Simulation of interfaces between room temperature ionic liquids and other liquids. , 2005, Faraday discussions.

[351]  Alexander D. MacKerell,et al.  Determination of Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2005, Journal of chemical theory and computation.

[352]  Behavior of polarizable models in presence of strong electric fields. I. Origin of nonlinear effects in water point-charge systems. , 2005, The Journal of chemical physics.

[353]  Haibo Yu,et al.  Accounting for polarization in molecular simulation , 2005, Comput. Phys. Commun..

[354]  Wei Wang,et al.  Fast evaluation of polarizable forces. , 2005, The Journal of chemical physics.

[355]  B. Roos,et al.  The coordination of uranyl in water: a combined quantum chemical and molecular simulation study. , 2005, Journal of the American Chemical Society.

[356]  S. Balasubramanian,et al.  Dynamics in a room-temperature ionic liquid: a computer simulation study of 1,3-dimethylimidazolium chloride. , 2005, The Journal of chemical physics.

[357]  E. Castner,et al.  Physical properties and intermolecular dynamics of an ionic liquid compared with its isoelectronic neutral binary solution. , 2005, The journal of physical chemistry. A.

[358]  M. Bühl,et al.  Ab initio molecular dynamics of liquid 1,3-dimethylimidazolium chloride. , 2005, The journal of physical chemistry. B.

[359]  Anthony J Stone,et al.  Distributed Multipole Analysis:  Stability for Large Basis Sets. , 2005, Journal of chemical theory and computation.

[360]  Alexander D. MacKerell,et al.  Polarizable empirical force field for alkanes based on the classical Drude oscillator model. , 2005, The journal of physical chemistry. B.

[361]  Jean-Philip Piquemal,et al.  A CSOV study of the difference between HF and DFT intermolecular interaction energy values: The importance of the charge transfer contribution , 2005, J. Comput. Chem..

[362]  P. Cummings,et al.  From dimer to condensed phases at extreme conditions: accurate predictions of the properties of water by a Gaussian charge polarizable model. , 2005, The Journal of chemical physics.

[363]  Shiping Huang,et al.  Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field. , 2005, Physical chemistry chemical physics : PCCP.

[364]  L. Renee Olano,et al.  Fluctuating charge normal modes: An algorithm for implementing molecular dynamics simulations with polarizable potentials , 2005, J. Comput. Chem..

[365]  E. Maginn,et al.  Monte Carlo simulations of gas solubility in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. , 2005, The journal of physical chemistry. B.

[366]  Jorge Kohanoff,et al.  Ab initio molecular dynamics simulation of a room temperature ionic liquid. , 2005, The journal of physical chemistry. B.

[367]  K. R. Seddon,et al.  Ionic Liquids III A: Fundamentals, Progress, Challenges, and Opportunities: Properties and Structure , 2005 .

[368]  Wei Wang,et al.  Fast Polarizable Force Field Computation in Biomolecular Simulations , 2005 .

[369]  W. V. van Gunsteren,et al.  Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. , 2004, The Journal of chemical physics.

[370]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[371]  A. Pádua,et al.  Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions , 2004 .

[372]  Gerhard Hummer,et al.  System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions , 2004 .

[373]  Alexander D. MacKerell,et al.  CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model , 2004, J. Comput. Chem..

[374]  Pengyu Y. Ren,et al.  Temperature and Pressure Dependence of the AMOEBA Water Model , 2004 .

[375]  G. Voth,et al.  Molecular Dynamics Simulation of Ionic Liquids: The Effect of Electronic Polarizability , 2004 .

[376]  G. Nagy,et al.  Conformational Change of the Cation-Anion Pair of an Ionic Liquid Related to Its Low-Temperature Solid-State Phase Transitions , 2004 .

[377]  J. Brennecke,et al.  Why Is CO2 so soluble in imidazolium-based ionic liquids? , 2004, Journal of the American Chemical Society.

[378]  Jií Kolafa,et al.  Time‐reversible always stable predictor–corrector method for molecular dynamics of polarizable molecules , 2004, J. Comput. Chem..

[379]  A. Pádua,et al.  Modeling Ionic Liquids Using a Systematic All-Atom Force Field , 2004 .

[380]  G. Voth,et al.  On the Structure and Dynamics of Ionic Liquids , 2004 .

[381]  P. Wasserscheid,et al.  Molecular structure, reorientational dynamics, and intermolecular interactions in the neat ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate , 2004 .

[382]  G. D. Smith,et al.  Molecular Modeling of Poly(Ethylene Oxide) Melts and Poly(Ethylene Oxide)-Based Polymer Electrolytes , 2004 .

[383]  Celeste Sagui,et al.  Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. , 2004, The Journal of chemical physics.

[384]  Pengyu Y. Ren,et al.  Ion solvation thermodynamics from simulation with a polarizable force field. , 2003, Journal of the American Chemical Society.

[385]  M. Jensen,et al.  Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange. , 2003, Journal of the American Chemical Society.

[386]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[387]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[388]  M. Ribeiro Molecular Dynamics Study on the Glass Transition in Ca0.4K0.6(NO3)1.4 , 2003 .

[389]  O. Borodin,et al.  Force Field Development and MD Simulations of Poly(ethylene oxide)/LiBF4 Polymer Electrolytes , 2003 .

[390]  M. Ribeiro,et al.  Molecular dynamics simulation of molten LiNO3 with flexible and polarizable anions , 2003 .

[391]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[392]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[393]  Steven J. Stuart,et al.  Potentials and Algorithms for Incorporating Polarizability in Computer Simulations , 2003 .

[394]  H. Stassen,et al.  Computational Study of Room Temperature Molten Salts Composed by 1-Alkyl-3-methylimidazolium CationsForce-Field Proposal and Validation , 2002 .

[395]  E. Maginn,et al.  Molecular Dynamics Study of the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[396]  Ramón Bosque,et al.  Polarizabilities of Solvents from the Chemical Composition , 2002, J. Chem. Inf. Comput. Sci..

[397]  Greg L. Hura,et al.  Water structure from scattering experiments and simulation. , 2002, Chemical reviews.

[398]  J. Brennecke,et al.  Thermodynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate from Monte Carlo simulations , 2002 .

[399]  P. M. Rodger,et al.  DL_POLY: Application to molecular simulation , 2002 .

[400]  K. Mikkelsen,et al.  Polarizability of molecular clusters as calculated by a dipole interaction model , 2002 .

[401]  M. Klein,et al.  An ab initio study of water molecules in the bromide ion solvation shell , 2002 .

[402]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[403]  Oleg Borodin,et al.  Ab initio quantum chemistry and molecular dynamics simulations studies of LiPF6/poly(ethylene oxide) interactions , 2001, J. Comput. Chem..

[404]  David van der Spoel,et al.  Molecular Dynamics Simulations of Water with Novel Shell-Model Potentials , 2001 .

[405]  M. Ribeiro Ionic dynamics in the glass-forming liquid Ca 0.4 K 0.6 (NO 3 ) 1.4 : A molecular dynamics study with a polarizable model , 2001 .

[406]  M. Ribeiro,et al.  Validating a polarizable model for the glass-forming liquid Ca0.4K0.6(NO3)1.4 by ab initio calculations , 2000 .

[407]  Steven J. Stuart,et al.  Surface Curvature Effects in the Aqueous Ionic Solvation of the Chloride Ion , 1999 .

[408]  Riccardo Chelli,et al.  Electrical response in chemical potential equalization schemes , 1999 .

[409]  Mauro C. C. Ribeiro,et al.  Fluctuating charge model for polyatomic ionic systems: A test case with diatomic anions , 1999 .

[410]  Ruhong Zhou,et al.  Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model , 1999 .

[411]  P. T. V. Duijnen,et al.  Molecular and Atomic Polarizabilities: Thole's Model Revisited , 1998 .

[412]  Oleg Borodin,et al.  Polymer force fields from ab initio studies of small model molecules: can we achieve chemical accuracy? , 1997 .

[413]  L. Dang,et al.  MOLECULAR DYNAMICS STUDY OF WATER CLUSTERS, LIQUID, AND LIQUID-VAPOR INTERFACE OF WATER WITH MANY-BODY POTENTIALS , 1997 .

[414]  Steven J. Stuart,et al.  Effects of Polarizability on the Hydration of the Chloride Ion , 1996 .

[415]  P. Kollman,et al.  Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide , 1995 .

[416]  J. Ilja Siepmann,et al.  Influence of surface topology and electrostatic potential on water/electrode systems , 1995 .

[417]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[418]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[419]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[420]  Alexander D. MacKerell,et al.  Importance of attractive van der Waals contribution in empirical energy function models for the heat of vaporization of polar liquids , 1991 .

[421]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[422]  Keith E. Laidig,et al.  PROPERTIES OF ATOMS IN MOLECULES : ATOMIC POLARIZABILITIES , 1990 .

[423]  Kenneth J. Miller,et al.  Additivity methods in molecular polarizability , 1990 .

[424]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[425]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[426]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid alcohols , 1986 .

[427]  Nohad Gresh,et al.  Intermolecular interactions: Elaboration on an additive procedure including an explicit charge-transfer contribution , 1986 .

[428]  William L. Jorgensen,et al.  Temperature and size dependence for Monte Carlo simulations of TIP4P water , 1985 .

[429]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[430]  Peter Pulay,et al.  Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene , 1983 .

[431]  Young Kee Kang,et al.  Additivity of atomic static polarizabilities and dispersion coefficients , 1982 .

[432]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[433]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[434]  G. S. Manning The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides , 1978, Quarterly Reviews of Biophysics.

[435]  Henry Margenau,et al.  Theory of intermolecular forces , 1969 .

[436]  C. Coulson,et al.  Interactions of H2O molecules in ice I. The dipole moment of an H2O molecule in ice , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[437]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Solutions. I , 1951 .

[438]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[439]  Robert S. Mulliken,et al.  A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities , 1934 .