A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes

[1]  N. Callewaert,et al.  Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2 , 2012, Microbial Cell Factories.

[2]  J. Stoye,et al.  Sequencing of high G+C microbial genomes using the ultrafast pyrosequencing technology. , 2011, Journal of biotechnology.

[3]  Spencer J. Williams,et al.  Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. , 2010, Nature chemical biology.

[4]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[5]  Yasunori,et al.  Production of human beta-hexosaminidase A with highly phosphorylated N-glycans by the overexpression of the Ogataea minuta MNN4 gene. , 2009, Glycobiology.

[6]  T. Braulke,et al.  Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases , 2009, Biological chemistry.

[7]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[8]  R. Mattaliano,et al.  Glycoengineered Acid α-Glucosidase With Improved Efficacy at Correcting the Metabolic Aberrations and Motor Function Deficits in a Mouse Model of Pompe Disease. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[9]  M. Beck New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy , 2007, Human Genetics.

[10]  Y. Jigami,et al.  Identification of phosphorylation sites in N-linked glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 2006, Analytical chemistry.

[11]  N. Raben,et al.  Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. , 2005, The Biochemical journal.

[12]  S. Casaregola,et al.  Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. , 2005, Fungal genetics and biology : FG & B.

[13]  Anthony H. Futerman,et al.  The cell biology of lysosomal storage disorders , 2004, Nature Reviews Molecular Cell Biology.

[14]  Roland Contreras,et al.  In Vivo Synthesis of Mammalian-Like, Hybrid-Type N-Glycans in Pichia pastoris , 2004, Applied and Environmental Microbiology.

[15]  M. Hirose,et al.  Cloning and characterization in Pichia pastoris of PNO1 gene required for phosphomannosylation of N-linked oligosaccharides. , 2004, Gene.

[16]  P. Thonart,et al.  New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. , 2003, Journal of microbiological methods.

[17]  Huawei Qiu,et al.  A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. , 2003, Glycobiology.

[18]  Y. Jigami,et al.  Production in yeast of alpha-galactosidase A, a lysosomal enzyme applicable to enzyme replacement therapy for Fabry disease. , 2002, Glycobiology.

[19]  R. Desnick,et al.  Enzyme replacement and enhancement therapies: lessons from lysosomal disorders , 2002, Nature Reviews Genetics.

[20]  M. Hancock,et al.  I-type lectins. , 2002 .

[21]  E. Stackebrandt,et al.  Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. , 2001, International journal of systematic and evolutionary microbiology.

[22]  S. Kornfeld,et al.  The Rate of Internalization of the Mannose 6-Phosphate/Insulin-like Growth Factor II Receptor Is Enhanced by Multivalent Ligand Binding* , 1999, The Journal of Biological Chemistry.

[23]  T. Odani,et al.  Mannosylphosphate transfer to yeast mannan. , 1999, Biochimica et biophysica acta.

[24]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[25]  P. Breuer,et al.  Serine phosphorylation site of the 46-kDa mannose 6-phosphate receptor is required for transport to the plasma membrane in Madin-Darby canine kidney and mouse fibroblast cells. , 1997, Molecular biology of the cell.

[26]  G. Barth,et al.  Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. , 1997, FEMS microbiology reviews.

[27]  T. Odani,et al.  Cloning and analysis of the MNN4 gene required for phosphorylation of N-linked oligosaccharides in Saccharomyces cerevisiae. , 1996, Glycobiology.

[28]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[29]  A. Hille-Rehfeld Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. , 1995, Biochimica et biophysica acta.

[30]  A. Varki,et al.  I-type Lectins (*) , 1995, The Journal of Biological Chemistry.

[31]  S. Kornfeld,et al.  Mannose 6-phosphate receptors and lysosomal enzyme targeting. , 1989, The Journal of biological chemistry.

[32]  K. von Figura,et al.  Is movement of mannose 6-phosphate-specific receptor triggered by binding of lysosomal enzymes? , 1987, The Journal of cell biology.

[33]  W. J. Visser,et al.  Uptake and stability of human and bovine acid alpha-glucosidase in cultured fibroblasts and skeletal muscle cells from glycogenosis type II patients. , 1984, Experimental cell research.

[34]  R. Schekman,et al.  Lyticase: Endoglucanase and Protease Activities That Act Together in Yeast Cell Lysis , 1980, Journal of bacteriology.

[35]  R. W. Davis,et al.  High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. L. Ballou Genetic control of yeast mannan structure: mapping genes mnn2 and mnn4 in Saccharomyces cerevisiae , 1975, Journal of bacteriology.

[37]  M. E. Brown,et al.  Nitrogen fixation by new species of Nocardia. , 1957, Journal of general microbiology.

[38]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[39]  R. Mattaliano,et al.  Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[40]  R. Contreras,et al.  Glycome mapping on DNA sequencing equipment , 2006, Nature Protocols.

[41]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[42]  M. Hancock,et al.  P-type lectins. , 2002, Biochimica et biophysica acta.

[43]  B. Oostra,et al.  Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease. , 1998, Human molecular genetics.

[44]  Randy J. Read,et al.  Electronic Reprint Biological Crystallography Decision-making in Structure Solution Using Bayesian Estimates of Map Quality: the Phenix Autosol Wizard Biological Crystallography Decision-making in Structure Solution Using Bayesian Estimates of Map Quality: the Phenix Autosol Wizard , 2022 .