Multiresolution analysis over triangles, based on quadratic Hermite interpolation
暂无分享,去创建一个
Hans-Peter Seidel | Tom Lyche | Morten Dæhlen | Knut Mørken | H. Seidel | T. Lyche | K. Mørken | M. Dæhlen | R. Schneider | Robert Schneider
[1] Wolfgang Dahmen,et al. Local Decomposition of Refinable Spaces and Wavelets , 1996 .
[2] Tony DeRose,et al. Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.
[3] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[4] Michael S. Floater,et al. Piecewise linear prewavelets on arbitrary triangulations , 1999, Numerische Mathematik.
[5] G. Faber. Über stetige Funktionen , 1908 .
[6] A. L. Méhauteé. Some families of triangular finite elements which can provide sequences of nested spaces , 1998 .
[7] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[8] T. He. C1 quadratic macroelements and C1 orthogonal multiresolution analyses in 2D , 2000 .
[9] Peter Schröder,et al. Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.