Any (controllable) driftless system with 3 inputs and 5 states is flat

[1]  E. Cartan,et al.  Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre , 1910 .

[2]  E. Cartan,et al.  Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes , 1914 .

[3]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[4]  J. Lévine,et al.  On dynamic feedback linearization , 1989 .

[5]  S. Chern,et al.  Exterior Differential Systems , 1990 .

[6]  Philippe Martin Contribution a l'etude des systemes differentiellement plats , 1992 .

[7]  Jean-Baptiste Pomet,et al.  A non-exact Brunovsky form and dynamic feedback linearization , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[8]  R. Gardner,et al.  The GS algorithm for exact linearization to Brunovsky normal form , 1992 .

[9]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[10]  S. Sastry,et al.  Trajectory generation for the N-trailer problem using Goursat normal form , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[11]  S. Shankar Sastry,et al.  A Multi-Steering Trailer System: Conversion into Chained Form Using , 1994 .

[12]  M. Fliess,et al.  Flatness, motion planning and trailer systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[13]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[14]  Richard M. Murray,et al.  Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems , 1994, Math. Control. Signals Syst..

[15]  Philippe Martin,et al.  Feedback linearization and driftless systems , 1994, Math. Control. Signals Syst..