Any (controllable) driftless system with 3 inputs and 5 states is flat
暂无分享,去创建一个
[1] E. Cartan,et al. Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre , 1910 .
[2] E. Cartan,et al. Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes , 1914 .
[3] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[4] J. Lévine,et al. On dynamic feedback linearization , 1989 .
[5] S. Chern,et al. Exterior Differential Systems , 1990 .
[6] Philippe Martin. Contribution a l'etude des systemes differentiellement plats , 1992 .
[7] Jean-Baptiste Pomet,et al. A non-exact Brunovsky form and dynamic feedback linearization , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.
[8] R. Gardner,et al. The GS algorithm for exact linearization to Brunovsky normal form , 1992 .
[9] J. Canny,et al. Nonholonomic Motion Planning , 1992 .
[10] S. Sastry,et al. Trajectory generation for the N-trailer problem using Goursat normal form , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[11] S. Shankar Sastry,et al. A Multi-Steering Trailer System: Conversion into Chained Form Using , 1994 .
[12] M. Fliess,et al. Flatness, motion planning and trailer systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[13] S. Sastry,et al. Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..
[14] Richard M. Murray,et al. Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems , 1994, Math. Control. Signals Syst..
[15] Philippe Martin,et al. Feedback linearization and driftless systems , 1994, Math. Control. Signals Syst..