Observation of Aharonov-Bohm conductance oscillations in a graphene ring

We investigate experimentally transport through ring-shaped devices etched in graphene and observe clear Aharonov-Bohm conductance oscillations. The temperature dependence of the oscillation amplitude indicates that below 1 K, the phase coherence length is comparable to or larger than the size of the ring. An increase in the amplitude is observed at high magnetic field, when the cyclotron diameter becomes comparable to the width of the arms of the ring. By measuring the dependence on gate voltage, we find that the Aharonov-Bohm effect vanishes at the charge neutrality point, and we observe an unexpected linear dependence of the oscillation amplitude on the ring conductance.