Entangling logical qubits with lattice surgery

[1]  Markus Müller,et al.  Experimental deterministic correction of qubit loss , 2020, Nature.

[2]  C. K. Andersen,et al.  Repeated quantum error detection in a surface code , 2019, Nature Physics.

[3]  Xiaobo Zhu,et al.  Experimental verification of five-qubit quantum error correction with superconducting qubits , 2019 .

[4]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[5]  Nicolai Friis,et al.  Optimizing Quantum Error Correction Codes with Reinforcement Learning , 2018, Quantum.

[6]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[7]  Robin Harper,et al.  Fault-Tolerant Logical Gates in the IBM Quantum Experience. , 2018, Physical review letters.

[8]  Ling Hu,et al.  Quantum error correction and universal gate set operation on a binomial bosonic logical qubit , 2018, Nature Physics.

[9]  M. Muller,et al.  Transversality and lattice surgery: Exploring realistic routes toward coupled logical qubits with trapped-ion quantum processors , 2018, Physical Review A.

[10]  Nicolai Friis,et al.  Entanglement certification from theory to experiment , 2018, Nature Reviews Physics.

[11]  Liang Jiang,et al.  Deterministic teleportation of a quantum gate between two logical qubits , 2018, Nature.

[12]  B. Lanyon,et al.  Observation of entangled states of a fully-controlled 20 qubit system , 2017, 1711.11092.

[13]  James R. Wootton,et al.  Repetition code of 15 qubits , 2017, 1709.00990.

[14]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[15]  Simon J. Devitt,et al.  Optimization of lattice surgery is NP-hard , 2017, npj Quantum Information.

[16]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[17]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[18]  Nicolai Friis,et al.  Fault-tolerant interface between quantum memories and quantum processors , 2016, Nature Communications.

[19]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[20]  P. Haljan,et al.  3D Sisyphus Cooling of Trapped Ions. , 2016, Physical review letters.

[21]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[22]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[23]  Matthias Troyer,et al.  A software methodology for compiling quantum programs , 2016, ArXiv.

[24]  R. Barends,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2014, Nature.

[25]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[26]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[27]  M. S. Tame,et al.  Experimental demonstration of a graph state quantum error-correction code , 2014, Nature Communications.

[28]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[29]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[30]  W Dür,et al.  Measurement-based quantum computation with trapped ions. , 2013, Physical review letters.

[31]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[32]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[33]  Dieter Suter,et al.  Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code. , 2012, Physical review letters.

[34]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[35]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[36]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[37]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[38]  R. Laflamme,et al.  Experimental quantum error correction with high fidelity , 2011, 1109.4821.

[39]  Samuel L. Braunstein,et al.  Quantum error correction beyond qubits , 2008, 0811.3734.

[40]  D. Cory,et al.  Experimental implementation of a concatenated quantum error-correcting code. , 2004, Physical review letters.

[41]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[42]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[43]  A. Chatterjee Introduction to Quantum Computation , 2003, quant-ph/0312111.

[44]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[45]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[46]  J. Eisert,et al.  Optimal local implementation of nonlocal quantum gates , 2000, quant-ph/0005101.

[47]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[48]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.