Optimisation of an exemplar oculomotor model using multi-objective genetic algorithms executed on a GPU-CPU combination

BackgroundParameter optimisation is a critical step in the construction of computational biology models. In eye movement research, computational models are increasingly important to understanding the mechanistic basis of normal and abnormal behaviour. In this study, we considered an existing neurobiological model of fast eye movements (saccades), capable of generating realistic simulations of: (i) normal horizontal saccades; and (ii) infantile nystagmus – pathological ocular oscillations that can be subdivided into different waveform classes. By developing appropriate fitness functions, we optimised the model to existing experimental saccade and nystagmus data, using a well-established multi-objective genetic algorithm. This algorithm required the model to be numerically integrated for very large numbers of parameter combinations. To address this computational bottleneck, we implemented a master-slave parallelisation, in which the model integrations were distributed across the compute units of a GPU, under the control of a CPU.ResultsWhile previous nystagmus fitting has been based on reproducing qualitative waveform characteristics, our optimisation protocol enabled us to perform the first direct fits of a model to experimental recordings. The fits to normal eye movements showed that although saccades of different amplitudes can be accurately simulated by individual parameter sets, a single set capable of fitting all amplitudes simultaneously cannot be determined. The fits to nystagmus oscillations systematically identified the parameter regimes in which the model can reproduce a number of canonical nystagmus waveforms to a high accuracy, whilst also identifying some waveforms that the model cannot simulate. Using a GPU to perform the model integrations yielded a speedup of around 20 compared to a high-end CPU.ConclusionsThe results of both optimisation problems enabled us to quantify the predictive capacity of the model, suggesting specific modifications that could expand its repertoire of simulated behaviours. In addition, the optimal parameter distributions we obtained were consistent with previous computational studies that had proposed the saccadic braking signal to be the origin of the instability preceding the development of infantile nystagmus oscillations. Finally, the master-slave parallelisation method we developed to accelerate the optimisation process can be readily adapted to fit other highly parametrised computational biology models to experimental data.

[1]  Olympia Roeva,et al.  Influence of the population size on the genetic algorithm performance in case of cultivation process modelling , 2013, 2013 Federated Conference on Computer Science and Information Systems.

[2]  Kalyanmoy Deb,et al.  Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction , 2011, Multi-objective Evolutionary Optimisation for Product Design and Manufacturing.

[3]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[4]  Richard V Abadi,et al.  Waveform characteristics in congenital nystagmus , 1987, Documenta Ophthalmologica.

[5]  Celso Grebogi,et al.  Extracting unstable periodic orbits from chaotic time series data , 1997 .

[6]  Laurence R. Young,et al.  Variable Feedback Experiments Testing a Sampled Data Model for Eye Tracking Movements , 1963 .

[7]  I. Gottlob,et al.  Living with nystagmus: a qualitative study , 2010, British Journal of Ophthalmology.

[8]  Richard V Abadi,et al.  Motor and sensory characteristics of infantile nystagmus , 2002, The British journal of ophthalmology.

[9]  J. Thompson,et al.  The prevalence of nystagmus: the Leicestershire nystagmus survey. , 2009, Investigative ophthalmology & visual science.

[10]  Ron Shonkwiler,et al.  Parallel Genetic Algorithms , 1993, ICGA.

[11]  H. Collewijn,et al.  Binocular co‐ordination of human horizontal saccadic eye movements. , 1988, The Journal of physiology.

[12]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[13]  F. Takens Detecting strange attractors in turbulence , 1981 .

[14]  Conor J. Houghton,et al.  Parameter estimation of neuron models using in-vitro and in-vivo electrophysiological data , 2015, Front. Neuroinform..

[15]  Jacob Roll,et al.  Systems biology: model based evaluation and comparison of potential explanations for given biological data , 2009, The FEBS journal.

[16]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[17]  Julio R. Banga,et al.  Multicriteria global optimization for biocircuit design , 2014, BMC Systems Biology.

[18]  Enrique Alba,et al.  A study of master-slave approaches to parallelize NSGA-II , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[19]  Dong-Kyun Kim,et al.  Search of optimal locations for species- or group-specific primer design in DNA sequences: Non-dominated Sorting Genetic Algorithm II (NSGA-II) , 2015, Ecol. Informatics.

[20]  anonymous,et al.  Comprehensive review , 2019 .

[21]  John E. Stone,et al.  OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems , 2010, Computing in Science & Engineering.

[22]  D. Robinson Eye Movement Control in Primates , 1968 .

[23]  J. J. Eggermont,et al.  Reconstruction of neural control signals for saccades based on an inverse method , 1985, Vision Research.

[24]  R. Roy,et al.  Multi-objective optimisation of the protein-ligand docking problem in drug discovery , 2006, GECCO.

[25]  Daniel Guitton,et al.  The use of system identification techniques in the analysis of oculomotor burst neuron spike train dynamics , 1996, Journal of Computational Neuroscience.

[26]  Yohei Murakami,et al.  Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology , 2014, PloS one.

[27]  B. Nevitt,et al.  Coping With Chaos , 1991, Proceedings of the 1991 International Symposium on Technology and Society - ISTAS `91.

[28]  M. Caramia,et al.  Multi-objective Management in Freight Logistics: Increasing Capacity, Service Level and Safety with Optimization Algorithms , 2008 .

[29]  L. Averbuch‐Heller Acquired nystagmus , 1999, Current treatment options in neurology.

[30]  R. Leigh,et al.  The neurology of eye movements , 1984 .

[31]  P. Pospichal GPU-based Acceleration of the Genetic Algorithm , 2009 .

[32]  David S. Broomhead,et al.  Modelling of congenital nystagmus waveforms produced by saccadic system abnormalities , 2000, Biological Cybernetics.

[33]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[34]  J R Banga,et al.  Multi-objective mixed integer strategy for the optimisation of biological networks. , 2010, IET systems biology.

[35]  Joshua D. Knowles,et al.  Multiobjective Optimization in Bioinformatics and Computational Biology , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[36]  L. Dell’Osso,et al.  Congenital nystagmus: hypotheses for its genesis and complex waveforms within a behavioral ocular motor system model. , 2004, Journal of vision.

[37]  Marjan Mernik,et al.  Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms , 2016, Inf. Sci..

[38]  Guillermo A. Cecchi,et al.  When the Optimal Is Not the Best: Parameter Estimation in Complex Biological Models , 2010, PloS one.

[39]  Julio Ortega Lopera,et al.  Comparison of parallel multi-objective approaches to protein structure prediction , 2011, The Journal of Supercomputing.

[40]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[41]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[42]  J. V. Van Gisbergen,et al.  Skewness of saccadic velocity profiles: a unifying parameter for normal and slow saccades. , 1987, Vision research.

[43]  Antonio Pescapè,et al.  Genetic Algorithm Modeling with GPU Parallel Computing Technology , 2012, WIRN.

[44]  Tea Tusar,et al.  Visualization of Pareto Front Approximations in Evolutionary Multiobjective Optimization: A Critical Review and the Prosection Method , 2015, IEEE Transactions on Evolutionary Computation.

[45]  S J Schiff,et al.  Periodic orbits: a new language for neuronal dynamics. , 1998, Biophysical journal.

[46]  Shu Jing Zhou,et al.  Review of Genetic Algorithm , 2011 .

[47]  Kevin O’Regan,et al.  Saccade size control in reading: Evidence for the linguistic control hypothesis , 1979, Perception & psychophysics.

[48]  Irene Gottlob,et al.  Congenital nystagmus: Randomized, controlled, double‐masked trial of memantine/gabapentin , 2007, Annals of neurology.

[49]  L. Stark,et al.  The main sequence, a tool for studying human eye movements , 1975 .

[50]  Aaftab Munshi,et al.  The OpenCL specification , 2009, 2009 IEEE Hot Chips 21 Symposium (HCS).

[51]  I. Gottlob,et al.  Nystagmus in childhood. , 2014, Pediatrics and neonatology.

[52]  Jesper Tegnér,et al.  Optimization in Biology Parameter Estimation and the Associated Optimization Problem , 2016 .

[53]  C. Scudder,et al.  The microscopic anatomy and physiology of the mammalian saccadic system , 1996, Progress in Neurobiology.

[54]  Karline Soetaert,et al.  Solving Ordinary Differential Equations in R , 2012 .

[55]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[56]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[57]  Grebogi,et al.  Detecting unstable periodic orbits in chaotic experimental data. , 1996, Physical review letters.

[58]  Hong Sun,et al.  Smolign: A Spatial Motifs-Based Protein Multiple Structural Alignment Method , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[59]  Kaisa Miettinen,et al.  Some Methods for Nonlinear Multi-objective Optimization , 2001, EMO.

[60]  Dominik Straumann,et al.  A re-examination of the time constant of the oculomotor neural integrator in human , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[61]  Luonan Chen,et al.  Multi-equilibrium property of metabolic networks: SSI module , 2011, Proceedings of the 30th Chinese Control Conference.

[62]  Jaap A. Kaandorp,et al.  Inferring Drosophila gap gene regulatory network: a parameter sensitivity and perturbation analysis , 2009, BMC Systems Biology.

[63]  Mikkel T. Jensen,et al.  Helper-objectives: Using multi-objective evolutionary algorithms for single-objective optimisation , 2004, J. Math. Model. Algorithms.

[64]  Maria Romano,et al.  Characterisation of baseline oscillation in congenital nystagmus eye movement recordings , 2009, Biomed. Signal Process. Control..

[65]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[66]  David S Broomhead,et al.  A new framework for investigating both normal and abnormal eye movements. , 2002, Progress in brain research.

[67]  S. Gielen,et al.  A quantitative analysis of generation of saccadic eye movements by burst neurons. , 1981, Journal of neurophysiology.

[68]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[69]  Wen-mei W. Hwu,et al.  Optimization principles and application performance evaluation of a multithreaded GPU using CUDA , 2008, PPoPP.

[70]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[71]  Nick Fogt,et al.  The Neurology of Eye Movements, 3rd ed. , 2000 .

[72]  Mohamad Zoinol Abidin Abdul Aziz,et al.  A review of Genetic Algorithms and Parallel Genetic Algorithms on Graphics Processing Unit (GPU) , 2013, 2013 IEEE International Conference on Control System, Computing and Engineering.

[73]  A. Fuchs,et al.  The brainstem burst generator for saccadic eye movements , 2002, Experimental Brain Research.

[74]  R. B. Daroff,et al.  Congenital nystagmus waveforms and foveation strategy , 1975, Documenta Ophthalmologica.

[75]  Richard A. Clement,et al.  Fixed point analysis of nystagmus , 2007, Journal of Neuroscience Methods.

[76]  D. Robinson,et al.  Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. , 1987, Journal of neurophysiology.

[77]  A. V. van Opstal,et al.  Dynamic ensemble coding of saccades in the monkey superior colliculus. , 2006, Journal of neurophysiology.

[78]  Akito Taneda,et al.  MODENA: a multi-objective RNA inverse folding , 2010, Advances and applications in bioinformatics and chemistry : AABC.

[79]  P. Wurtz,et al.  Size Matters: Saccades during Scene Perception , 2007, Perception.

[80]  Jonathan M. Garibaldi,et al.  Parameter Estimation Using Metaheuristics in Systems Biology: A Comprehensive Review , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[81]  L. Optican,et al.  A hypothetical explanation of congenital nystagmus , 1984, Biological Cybernetics.

[82]  J. Harbison,et al.  The Neurology of Eye Movements, 3rd ed , 2000 .

[83]  K Aoki,et al.  5. Visualization of separation points and wake at smooth ball and dimpled balls , 2001 .

[84]  Jerald B. Johnson,et al.  Model selection in ecology and evolution. , 2004, Trends in ecology & evolution.

[85]  Roberto Antonio Vázquez,et al.  Tuning the parameters of an integrate and fire neuron via a genetic algorithm for solving pattern recognition problems , 2015, Neurocomputing.

[86]  Masanori Arita,et al.  Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach , 2011, BMC Systems Biology.

[87]  R A Clement,et al.  Eye movement instabilities and nystagmus can be predicted by a nonlinear dynamics model of the saccadic system , 2005, Journal of mathematical biology.

[88]  Ozgur E. Akman,et al.  Dizzy-Beats: a Bayesian evidence analysis tool for systems biology , 2015, Bioinform..

[89]  Maria Theodorou,et al.  Classification of infantile nystagmus waveforms , 2016, Vision Research.

[90]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[91]  Henry Markram,et al.  A Novel Multiple Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental Data , 2007, Front. Neurosci..

[92]  David S. Broomhead,et al.  Characterisation of congenital nystagmus waveforms in terms of periodic orbits , 2002, Vision Research.

[93]  Holger Fröhlich,et al.  Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance , 2009, BMC Systems Biology.

[94]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[95]  Francesco Falciani,et al.  A computational framework for gene regulatory network inference that combines multiple methods and datasets , 2011, BMC Systems Biology.

[96]  Jonathan E. Fieldsend,et al.  Visualizing Mutually Nondominating Solution Sets in Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.