Copper Guanidinoquinoline Complexes as Entatic State Models of Electron-Transfer Proteins.

The electron-transfer abilities of the copper guanidinoquinoline (GUAqu) complexes [Cu(TMGqu)2 ]+/2+ and [Cu(DMEGqu)2 ]+/2+ (TMGqu=tetramethylguanidinoquinoline, DMEGqu=dimethylethylguanidinoquinoline) were examined in different solvents. The determination of the electron self-exchange rate based on the Marcus theory reveals the highest electron-transfer rate of copper complexes with pure N-donor ligands (k11 =1.2×104  s-1  m-1 in propionitrile). This is supported by an examination of the reorganisation energy of the complexes by using Eyring theory and DFT calculations. The low reorganisation energies in nitrile solvents correspond with the high electron-transfer rates of the complexes. Therefore, the [Cu(GUAqu)2 ]+/2+ complexes act as good entatic states model of copper enzymes. The structural influence of the complexes on the kinetic parameters shows that the TMGqu system possesses a higher electron-transfer rate than DMEGqu. Supporting DFT calculations give a closer insight into the kinetics and thermodynamics (Nelsen's four-point method and isodesmic reactions) of the electron transfer.

[1]  Hans‐Jörg Himmel,et al.  Copper Complexes of New Redox-Active 4,5-Bisguanidino-Substituted Benzodioxole Ligands: Control of the Electronic Structure by Counter-Ligands, Solvent, and Temperature. , 2016, Chemistry.

[2]  U. Flörke,et al.  Zinc chloride complexes with aliphatic and aromatic guanidine hybrid ligands and their activity in the ring‐opening polymerisation of D,L‐lactide , 2016 .

[3]  Hans‐Jörg Himmel,et al.  The control of the electronic structure of dinuclear copper complexes of redox-active tetrakisguanidine ligands by the environment. , 2016, Dalton transactions.

[4]  Julia Stanek,et al.  Implications of Guanidine Substitution on Copper Complexes as Entatic‐State Models , 2016 .

[5]  Sonja Herres-Pawlis,et al.  Optical response of the Cu2S2 diamond core in Cu2II (NGuaS)2Cl2 , 2016, J. Comput. Chem..

[6]  U. Flörke,et al.  A Comprehensive Study of Copper Guanidine Quinoline Complexes: Predicting the Activity of Catalysts in ATRP with DFT. , 2016, Chemistry.

[7]  S. Fukuzumi,et al.  A Bispidine Iron(IV)-Oxo Complex in the Entatic State. , 2016, Angewandte Chemie.

[8]  Hans‐Jörg Himmel,et al.  A Valence Tautomeric Dinuclear Copper Tetrakisguanidine Complex. , 2016, Chemistry.

[9]  Eric W Dahl,et al.  Hydrogen Bonds Dictate the Coordination Geometry of Copper: Characterization of a Square-Planar Copper(I) Complex. , 2016, Angewandte Chemie.

[10]  Hans‐Jörg Himmel,et al.  What Makes a Strong Organic Electron Donor (or Acceptor)? , 2015, Chemistry.

[11]  François Lambert,et al.  Entasis through hook-and-loop fastening in a glycoligand with cumulative weak forces stabilizing Cu(I). , 2015, Journal of the American Chemical Society.

[12]  Richard Grunzke,et al.  Insights into the influence of dispersion correction in the theoretical treatment of guanidine‐quinoline copper(I) complexes , 2014, J. Comput. Chem..

[13]  C. Wagner,et al.  Trinuclear complexes and coordination polymers of redox-active guanidino-functionalized aromatic (GFA) compounds with a triphenylene core. , 2014, Inorganic chemistry.

[14]  Yi Lu,et al.  Metalloproteins Containing Cytochrome, Iron–Sulfur, or Copper Redox Centers , 2014, Chemical reviews.

[15]  Li Tian,et al.  Copper active sites in biology. , 2014, Chemical reviews.

[16]  S. Herres‐Pawlis,et al.  New Guanidine-Pyridine Copper Complexes and Their Application in ATRP , 2014 .

[17]  Geneviève Sauvé,et al.  Density Functional Theory Study Predicts Low Reorganization Energies for Azadipyrromethene-Based Metal Complexes. , 2014, The journal of physical chemistry letters.

[18]  Sonja Herres-Pawlis,et al.  Geometrical and optical benchmarking of copper guanidine–quinoline complexes: Insights from TD‐DFT and many‐body perturbation theory† , 2014, J. Comput. Chem..

[19]  Alexander Hoffmann,et al.  Den entatischen Zustand im Griff – ein Duo von Kupfer‐Komplexen , 2014 .

[20]  Alexander Hoffmann,et al.  Catching an entatic state--a pair of copper complexes. , 2014, Angewandte Chemie.

[21]  Hans‐Jörg Himmel,et al.  4,4′,5,5′-Tetrakis(guanidinyl)binaphthyl – Synthesis and Properties of Two Redox-Active Ligands and Oxidative C–C Coupling to Perylene Derivatives , 2013 .

[22]  Frank Neese,et al.  Outer-sphere contributions to the electronic structure of type zero copper proteins. , 2012, Journal of the American Chemical Society.

[23]  Sonja Herres-Pawlis,et al.  Lactide Polymerisation with Complexes of Neutral N‐Donors – New Strategies for Robust Catalysts , 2012 .

[24]  U. Flörke,et al.  Zinc Complexes with Guanidine‐Pyridine Hybrid Ligands: Anion Effect and Catalytic Activity , 2015 .

[25]  Alexander Hoffmann,et al.  (Guanidine)copper complexes: structural variety and application in bioinorganic chemistry and catalysis , 2011 .

[26]  Sonja Herres-Pawlis,et al.  Bidentate guanidine ligands with ethylene spacer in copper-dioxygen chemistry: Structural characterization of bis(μ-hydroxo) dicopper complexes , 2011 .

[27]  U. Flörke,et al.  Synthesis and Application of New Guanidine Copper Complexes in Atom Transfer Radical Polymerisation , 2011 .

[28]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[29]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[30]  Harry B Gray,et al.  Electron transfer reactivity of type zero Pseudomonas aeruginosa azurin. , 2011, Journal of the American Chemical Society.

[31]  Edward I. Solomon,et al.  Recent advances in understanding blue copper proteins , 2011 .

[32]  A. Rosenzweig Bioinorganic chemistry: Zeroing in on a new copper site. , 2009, Nature chemistry.

[33]  Harry B. Gray,et al.  Type Zero Copper Proteins , 2009, Nature chemistry.

[34]  Sonja Herres-Pawlis,et al.  Stabilisation of a highly reactive bis(mu-oxo)dicopper(III) species at room temperature by electronic and steric constraint of an unconventional nitrogen donor ligand. , 2009, Chemistry.

[35]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[36]  Alexander Hoffmann,et al.  Synthesis and properties of guanidine-pyridine hybridligands and structural characterisation of their mono- and bis(chelated) cobalt complexes , 2009 .

[37]  Peter Comba,et al.  Computation of structures and properties of transition metal compounds , 2009 .

[38]  H. Gray,et al.  High-potential C112D/M121X (X = M, E, H, L) Pseudomonas aeruginosa azurins. , 2009, Inorganic chemistry.

[39]  Matthias Tamm,et al.  Synthesis and reactivity of copper(I) complexes with an ethylene-bridged bis(imidazolin-2-imine) ligand. , 2008, Dalton transactions.

[40]  S. Fukuzumi,et al.  Fundamental electron-transfer properties of non-heme oxoiron(IV) complexes. , 2008, Journal of the American Chemical Society.

[41]  Massimo Di Fusco,et al.  A kinetic study of the electron-transfer reaction of the phthalimide-N-oxyl radical (PINO) with ferrocenes. , 2007, The Journal of organic chemistry.

[42]  Timothy J Nelson,et al.  A definitive example of a geometric "entatic state" effect: electron-transfer kinetics for a copper(II/I) complex involving A quinquedentate macrocyclic trithiaether-bipyridine ligand. , 2007, Journal of the American Chemical Society.

[43]  D. Powell,et al.  Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, tau4. , 2007, Dalton transactions.

[44]  K. Harms,et al.  Kristallographische Charakterisierung eines synthetischen 1:1-End-on-Kupferdisauerstoff- Adduktkomplexes† , 2006 .

[45]  Klaus Harms,et al.  Crystallographic characterization of a synthetic 1:1 end-on copper dioxygen adduct complex. , 2006, Angewandte Chemie.

[46]  Sukhdeep Kaur,et al.  Tetramethylguanidino‐tris(2‐aminoethyl)amine: A novel ligand for copper‐based atom transfer radical polymerization , 2005 .

[47]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[48]  R. Jordan,et al.  Kinetic studies of tris(2,2′-bipyridine)iron(III) perchlorate with cobaloxime, [Co(dmgBF2)2(H2O)2] , 2005 .

[49]  P. Comba,et al.  Slow Electron Self‐Exchange in Spite of a Small Inner‐Sphere Reorganisation Energy − The Electron‐Transfer Properties of a Copper Complex with a Tetradentate Bispidine Ligand , 2004 .

[50]  Siegfried Schneider,et al.  Spektroskopischer und theoretischer Nachweis eines beständigen End‐on‐Kupfersuperoxokomplexes , 2004 .

[51]  Siegfried Schneider,et al.  Combined spectroscopic and theoretical evidence for a persistent end-on copper superoxo complex. , 2004, Angewandte Chemie.

[52]  D. Rorabacher,et al.  Electron transfer by copper centers. , 2004, Chemical reviews.

[53]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[54]  S. Fukuzumi,et al.  Mechanisms of hydrogen-, oxygen-, and electron-transfer reactions of cumylperoxyl radical. , 2003, Journal of the American Chemical Society.

[55]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[56]  Mitsuru Matsumoto,et al.  Self-exchange reaction kinetics of metallocenes revisited: insights from the decamethylferricenium-decamethylferrocene reaction at variable pressure. , 2003, Inorganic chemistry.

[57]  R. Gschwind,et al.  1,8-bis(tetramethylguanidino)naphthalene (TMGN): a new, superbasic and kinetically active "proton sponge". , 2002, Chemistry.

[58]  Peter Comba,et al.  Coordination compounds in the entatic state , 2000 .

[59]  P. Comba Strains and stresses in coordination compounds , 1999 .

[60]  Lutz H. Gade Koordinationschemie: GADE:KOORDINATIONS-CHEMIE O-BK , 1998 .

[61]  R. Marcus Transfer reactions in chemistry. Theory and experiment , 1997 .

[62]  G. Bernardinelli,et al.  2,2’-bis(3-(2-Pyridyl)-1-Methyltriazolyl)Biphenyl - A Tetracoordinating Wrapping Ligand Inducing Similar Skew Coordination Geometries at Copper(I) and Copper(II) , 1996 .

[63]  R. Murray,et al.  Solvent Dynamics Effects on Heterogeneous Electron Transfer Rate Constants of Cobalt Tris(bipyridine) , 1996 .

[64]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[65]  Stephen F. Nelsen,et al.  Estimation of marcus λ for p‐phenylenediamines from the optical spectrum of a dimeric derivative , 1994 .

[66]  Rudolph A. Marcus,et al.  Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture) , 1993 .

[67]  R. A. Marcus Elektronentransferreaktionen in der Chemie - Theorie und Experiment (Nobel-Vortrag)† , 1993 .

[68]  L. A. Ochrymowycz,et al.  Direct determination of the self-exchange electron-transfer rate constant for a copper(II/I) macrocyclic pentathiaether complex , 1991 .

[69]  M. J. Weaver,et al.  Solvent Dynamical Effects in Electron Transfer: Evaluation of Electronic Matrix Coupling Elements for Metallocene Self-Exchange Reactions , 1989 .

[70]  Hideo Doine,et al.  Kinetics of the bis(2,9-dimethyl-1,10-phenanthroline)copper(I/II) self-exchange reaction in solution , 1989 .

[71]  M. J. Weaver,et al.  Solvent and electrolyte effects on the kinetics of ferrocenium-ferrocene self-exchange: a reevaluation , 1989 .

[72]  Stephen F. Nelsen,et al.  Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations , 1987 .

[73]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[74]  J. Guss,et al.  Structure of oxidized poplar plastocyanin at 1.6 A resolution. , 1983, Journal of molecular biology.

[75]  M. J. Weaver,et al.  Solvent effects on the kinetics of simple electrochemical reactions , 1981 .

[76]  E. Yang,et al.  Electron exchange between ferrocene and ferrocenium ion. Effects of solvent and of ring substitution on the rate , 1980 .

[77]  R J Williams,et al.  Metalloenzymes: the entatic nature of their active sites. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[78]  S. Herres‐Pawlis,et al.  Guanidine Metal Complexes for Bioinorganic Chemistry and Polymerisation Catalysis , 2015 .

[79]  Christian Würtele,et al.  Reactions of a copper(II) superoxo complex lead to C-H and O-H substrate oxygenation: modeling copper-monooxygenase C-H hydroxylation. , 2008, Angewandte Chemie.

[80]  C. Buning,et al.  Loop-Directed Mutagenesis of the Blue Copper Protein Amicyanin from Paracoccus versutus and Its Effect on the Structure and the Activity of the Type-1 Copper Site , 2000 .

[81]  T. Elder,et al.  Internal Reorganization Energies for Copper Redox Couples: The Slow Electron-Transfer Reactions of the [CuII/I(bib)2]2+/+ Couple , 1999 .

[82]  H. Schugar,et al.  Preparation, structure, and properties of pseudotetrahedral, D2d complexes of copper(II), nickel(II), cobalt(II), copper(I), and zinc(II) with the geometrically constraining bidentate ligand 2,2'-bis(2-imidazolyl)biphenyl. Examination of electron self-exchange for the Cu(I)/Cu(II) pair , 1990 .

[83]  R. S. Nyholm,et al.  681. Studies in co-ordination chemistry. Part XIII. Magnetic moments and bond types of transition-metal complexes , 1952 .