Charge self-consistent dynamical mean-field theory based on the full-potential linear muffin-tin orbital method: Methodology and applications

Full charge self-consistence (CSC) over the electron density has been implemented into the local density approximation plus dynamical mean-field theory (LDA + DMFT) scheme based on a full-potential ...

[1]  V. Anisimov,et al.  NiO: correlated band structure of a charge-transfer insulator. , 2007, Physical review letters.

[2]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[3]  M. Katsnelson,et al.  Correlation effects in electronic structure of actinide monochalcogenides , 2005 .

[4]  G. Kotliar,et al.  Correlated electrons in δ-plutonium within a dynamical mean-field picture , 2001, Nature.

[5]  A. Georges,et al.  Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications , 2007, 0705.2161.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Dynamical mean-field theory of photoemission spectra of actinide compounds , 2005, cond-mat/0508311.

[8]  V. Anisimov,et al.  Local correlations and hole doping in NiO: A dynamical mean-field study , 2006, cond-mat/0612116.

[9]  A. I. Lichtenstein,et al.  Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach , 1997, cond-mat/9707127.

[10]  Joshua R. Smith,et al.  Universal features of the equation of state of solids , 1989 .

[11]  V. Anisimov,et al.  Electronic correlations at the α-γ structural phase transition in paramagnetic iron. , 2010, Physical review letters.

[12]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[13]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[14]  F. D. Bergevin,et al.  Observation of orbital moment in NiO , 1998 .

[15]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[16]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[17]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[18]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[19]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[20]  Oleksiy Grechnyev Theoretical Studies of Two-Dimensional Magnetism and Chemical Bonding , 2005 .

[21]  P. Wilcox,et al.  AIP Conference Proceedings , 2012 .

[22]  M. Katsnelson,et al.  Theory of bulk and surface quasiparticle spectra for Fe, Co, and Ni , 2007 .

[23]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[24]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[25]  G. Kotliar,et al.  Spectral density functionals for electronic structure calculations , 2001, cond-mat/0106308.

[26]  M. Katsnelson,et al.  Finite-temperature magnetism of transition metals: an ab initio dynamical mean-field theory. , 2001, Physical review letters.

[27]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[28]  Hong,et al.  Magnetic properties of R ions in RCo5 compounds (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er). , 1991, Physical review. B, Condensed matter.

[29]  E. Rotenberg,et al.  Observation of the two-hole satellite in Cr and Fe metal by resonant photoemission at the 2p absorption energy , 2000 .

[30]  S. Lebègue,et al.  Multiplet effects in the electronic structure of intermediate-valence compounds , 2009 .

[31]  LDA++ approach to the electronic structure of magnets: correlation effects in iron , 1998, cond-mat/9808094.

[32]  S. Lebègue,et al.  Multiplet effects in the electronic structure of heavy rare-earth metals , 2006 .

[33]  S. Lebègue,et al.  Electronic structure and spectroscopic properties of thulium monochalcogenides , 2005 .

[34]  Electronic structure and magnetic properties of correlated metals , 2002, cond-mat/0204564.

[35]  Mebarek Alouani,et al.  Full-Potential Electronic Structure Method , 2010 .

[36]  H. Dürr,et al.  Strength of correlation effects in the electronic structure of iron. , 2009, Physical review letters.

[37]  I. Leonov,et al.  LDA+DMFT computation of the electronic spectrum of NiO , 2006, cond-mat/0606285.

[38]  F. Jing,et al.  Magnetism and phase transitions of iron under pressure , 2008 .

[39]  Johansson,et al.  Orbital magnetism in Fe, Co, and Ni. , 1990, Physical review. B, Condensed matter.

[40]  Kristjan Haule,et al.  Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn 5 , CeCoIn 5 , and CeRhIn 5 , 2009, 0907.0195.

[41]  小谷 正雄 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .

[42]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[43]  USA,et al.  First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory , 1997, cond-mat/9704231.

[44]  A. Georges,et al.  Dynamical mean-field theory within an augmented plane-wave framework: Assessing electronic correlations in the iron pnictide LaFeAsO , 2009, 0906.3735.

[45]  P. Thalmeier,et al.  Intra-atomic correlation energies in cubic metals with canonicaldbands , 1979 .

[46]  A. Lichtenstein,et al.  Electronic structure and spectral properties of Am, Cm, and Bk: Charge-density self-consistent LDA + HIA calculations in the FP-LAPW basis , 2009, 0903.1998.

[47]  F. D. Bergevin,et al.  Observation of orbital moment in NiO using magnetic x-ray scattering , 1999 .

[48]  H. Ebert,et al.  Correlation effects in the total energy, the bulk modulus, and the lattice constant of a transition metal: Combined local-density approximation and dynamical mean-field theory applied to Ni and Mn , 2008, 0809.4921.

[49]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A. I. Lichtenstein,et al.  Multiple-scattering formalism for correlated systems: A KKR-DMFT approach , 2005, cond-mat/0504760.

[51]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[52]  Cooper,et al.  Synthesis of band and model Hamiltonian theory for hybridizing cerium systems. , 1987, Physical review. B, Condensed matter.

[53]  H. Ebert,et al.  Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt , 2010, 1008.3414.

[54]  T. Oguchi,et al.  Spin-Polarized AM05 Functional for 3d-Transition Metals , 2010 .

[55]  J. Costa-Quintana,et al.  A First-Principles Pseudopotential Model for the Strong Intrasite Interaction Applied to the 4f13 Configuration (Yb2O3) , 1984, May 1.

[56]  Antoine Georges,et al.  Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites. , 2004, Physical review letters.

[57]  F. Cacialli Journal of Physics Condensed Matter: Preface , 2002 .