NanoSIMS for biological applications: Current practices and analyses.

Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.

[1]  A. Meibom,et al.  Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification , 2017, Royal Society Open Science.

[2]  O. Hoegh‐Guldberg,et al.  A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis , 2012, The ISME Journal.

[3]  Hans C. Bernstein,et al.  Spatially tracking (13) C-labelled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry. , 2014, Environmental microbiology reports.

[4]  L. Hoffmann,et al.  Identification and localization of nanoparticles in tissues by mass spectrometry , 2013 .

[5]  D. Newman,et al.  Probing the Subcellular Localization of Hopanoid Lipids in Bacteria Using NanoSIMS , 2014, PloS one.

[6]  P. Clode,et al.  High-resolution secondary ion mass spectrometry analysis of carbon dynamics in mycorrhizas formed by an obligately myco-heterotrophic orchid. , 2014, Plant, cell & environment.

[7]  M. Brasier,et al.  Geochemistry and nano-structure of a putative ̃3240 million-year-old black smoker biota, Sulphur Springs Group, Western Australia , 2014 .

[8]  D. Bourne,et al.  Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates , 2013 .

[9]  N. Farrell,et al.  NanoSIMS multi-element imaging reveals internalisation and nucleolar targeting for a highly-charged polynuclear platinum compound. , 2013, Chemical communications.

[10]  P. Weber,et al.  Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms. , 2016, Environmental microbiology reports.

[11]  Christopher R Anderton,et al.  Quantifying element incorporation in multispecies biofilms using nanoscale secondary ion mass spectrometry image analysis. , 2016, Biointerphases.

[12]  G. Knott,et al.  Imaging liver and brain glycogen metabolism at the nanometer scale. , 2015, Nanomedicine : nanotechnology, biology, and medicine.

[13]  Changjun Li,et al.  CIECAM02 and Its Recent Developments , 2013 .

[14]  K. Iyer,et al.  Enabling dual cellular destinations of polymeric nanoparticles for treatment following partial injury to the central nervous system. , 2016, Biomaterials.

[15]  D. Relman,et al.  Linking Microbial Phylogeny to Metabolic Activity at the Single-Cell Level by Using Enhanced Element Labeling-Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (EL-FISH) and NanoSIMS , 2008, Applied and Environmental Microbiology.

[16]  Yohey Suzuki,et al.  Deep microbial life in high-quality granitic groundwater from geochemically and geographically distinct underground boreholes. , 2016, Environmental microbiology reports.

[17]  Elisa Boutet-Robinet,et al.  Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon , 2017, Scientific Reports.

[18]  P. Shewry,et al.  NanoSIMS analysis of arsenic and selenium in cereal grain. , 2010, The New phytologist.

[19]  Takeshi Terada,et al.  Carbon and nitrogen assimilation in deep subseafloor microbial cells , 2011, Proceedings of the National Academy of Sciences.

[20]  M. Saunders,et al.  Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping , 2015 .

[21]  Y. Coffinier,et al.  Combed single DNA molecules imaged by secondary ion mass spectrometry. , 2011, Analytical chemistry.

[22]  Samuel S. Silva,et al.  Using color in visualization: A survey , 2011, Comput. Graph..

[23]  Yilin Hu,et al.  The in vivo hydrocarbon formation by vanadium nitrogenase follows a secondary metabolic pathway , 2016, Nature Communications.

[24]  C. Lechene,et al.  Quantitative imaging of cells with multi-isotope imaging mass spectrometry (MIMS)—Nanoautography with stable isotope tracers , 2006 .

[25]  E. Gontier,et al.  A New Radio Frequency Plasma Oxygen Primary Ion Source on Nano Secondary Ion Mass Spectrometry for Improved Lateral Resolution and Detection of Electropositive Elements at Single Cell Level. , 2016, Analytical chemistry.

[26]  M. Kruszewski,et al.  Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna. , 2016, The Science of the total environment.

[27]  K. Shirai,et al.  Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell , 2015, Scientific Reports.

[28]  A. Ewing,et al.  Molecule Specific Imaging of Freeze-Fractured, Frozen-Hydrated Model Membrane Systems Using Mass Spectrometry , 2000 .

[29]  S. Young,et al.  GPIHBP1 and Plasma Triglyceride Metabolism , 2016, Trends in Endocrinology & Metabolism.

[30]  M. Steinhauser,et al.  Quasi‐simultaneous acquisition of nine secondary ions with seven detectors on NanoSIMS50L: application to biological samples , 2014, Surface and interface analysis : SIA.

[31]  Tom Wirtz,et al.  High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument , 2015, Beilstein journal of nanotechnology.

[32]  F. Fuso,et al.  Ion microscopy based on laser-cooled cesium atoms. , 2016, Ultramicroscopy.

[33]  Eoin L. Brodie,et al.  High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use , 2011, The ISME Journal.

[34]  Brian C. Thomas,et al.  Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface , 2014, Nature Communications.

[35]  F. Guérold,et al.  Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles. , 2016, The Science of the total environment.

[36]  C. Slomp,et al.  Cable Bacteria Control Iron-Phosphorus Dynamics in Sediments of a Coastal Hypoxic Basin. , 2016, Environmental science & technology.

[37]  D. Castner,et al.  Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. , 2003, Biomaterials.

[38]  M. Kraft,et al.  Imaging lipids with secondary ion mass spectrometry. , 2014, Biochimica et biophysica acta.

[39]  Haibo Jiang,et al.  High-resolution sub-cellular imaging by correlative NanoSIMS and electron microscopy of amiodarone internalisation by lung macrophages as evidence for drug-induced phospholipidosis. , 2017, Chemical communications.

[40]  L. Hoffmann,et al.  Dynamic NanoSIMS ion imaging of unicellular freshwater algae exposed to copper , 2009, Analytical and bioanalytical chemistry.

[41]  Luis Pedro Coelho,et al.  Mahotas: Open source software for scriptable computer vision , 2012, ArXiv.

[42]  M. Carretero,et al.  Clay minerals and their beneficial effects upon human health. A review , 2002 .

[43]  K. Iyer,et al.  Characterization of polymeric nanoparticles for treatment of partial injury to the central nervous system , 2016, Data in brief.

[44]  J. Audinot,et al.  Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels , 2016, Journal of Nanobiotechnology.

[45]  Jens Müller,et al.  Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability. , 2015, Developmental cell.

[46]  M. Strous,et al.  Responses of the coastal bacterial community to viral infection of the algae Phaeocystis globosa , 2013, The ISME Journal.

[47]  H. Strauss,et al.  A Rare Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from the 3.4 Ga Strelley Pool Formation, Western Australia , 2016, PloS one.

[48]  A. Schintlmeister,et al.  Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells , 2014, Proceedings of the National Academy of Sciences.

[49]  M P Simunovic,et al.  Colour vision deficiency , 2010, Eye.

[50]  T. Hübschmann,et al.  Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS , 2015, Front. Microbiol..

[51]  Anton Nekrutenko,et al.  Ten Simple Rules for Reproducible Computational Research , 2013, PLoS Comput. Biol..

[52]  M. Walport,et al.  Science as a public enterprise: the case for open data , 2011, The Lancet.

[53]  S. Boxer,et al.  Advances in imaging secondary ion mass spectrometry for biological samples. , 2009, Annual review of biophysics.

[54]  Sean C. Bendall,et al.  Multiplexed ion beam imaging of human breast tumors , 2014, Nature Medicine.

[55]  O. Bergmann,et al.  No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice , 2015, Cell.

[56]  Markus Schmid,et al.  Zero-valent sulphur is a key intermediate in marine methane oxidation , 2012, Nature.

[57]  G. Shearer,et al.  4 – Natural Abundance of 15N: Fractional Contribution of Two Sources to a Common Sink and Use of Isotope Discrimination , 1993 .

[58]  Sherry L. Cady,et al.  Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life , 2014 .

[59]  D. Murphy,et al.  Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (Triticum aestivum) , 2013, The New phytologist.

[60]  P. Weber,et al.  Correlated AFM and NanoSIMS imaging to probe cholesterol-induced changes in phase behavior and non-ideal mixing in ternary lipid membranes. , 2011, Biochimica et biophysica acta.

[61]  M. Kuypers,et al.  Look@NanoSIMS--a tool for the analysis of nanoSIMS data in environmental microbiology. , 2012, Environmental microbiology.

[62]  A. Harvey,et al.  Early in vivo changes in calcium ions, oxidative stress markers, and ion channel immunoreactivity following partial injury to the optic nerve , 2012, Journal of neuroscience research.

[63]  K. Green,et al.  Identification of the Primary Lesion of Toxic Aluminum in Plant Roots1[OPEN] , 2015, Plant Physiology.

[64]  R. Levenson,et al.  Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging , 2015, Laboratory Investigation.

[65]  Peter Tontonoz,et al.  High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS , 2017, Proceedings of the National Academy of Sciences.

[66]  J. Audinot,et al.  The effect of FISH and CARD-FISH on the isotopic composition of (13)C- and (15)N-labeled Pseudomonas putida cells measured by nanoSIMS. , 2014, Systematic and applied microbiology.

[67]  M. Saunders,et al.  Visualising gold inside tumour cells following treatment with an antitumour gold(I) complex. , 2011, Metallomics : integrated biometal science.

[68]  Andreas Kappler,et al.  Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM). , 2012, Environmental microbiology.

[69]  Tianlun Li,et al.  Simultaneous analysis of microbial identity and function using NanoSIMS , 2008, Environmental microbiology.

[70]  D. Vaulot,et al.  Unicellular Cyanobacterium Symbiotic with a Single-Celled Eukaryotic Alga , 2012, Science.

[71]  I. Franchi,et al.  Tubular microfossils from 2.8 to 2.7 Ga-old lacustrine deposits of South Africa : a sign for early origin of eukaryotes? , 2016 .

[72]  J. A. Smith,et al.  High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. , 2010, The Plant journal : for cell and molecular biology.

[73]  N. Dubilier,et al.  Use of carbon monoxide and hydrogen by a bacteria–animal symbiosis from seagrass sediments , 2015, Environmental microbiology.

[74]  P. Shewry,et al.  Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry , 2012 .

[75]  P. Weber,et al.  NanoSIP: NanoSIMS applications for microbial biology. , 2012, Methods in molecular biology.

[76]  S. Littmann,et al.  N2-fixation, ammonium release and N-transfer to the microbial and classical food web within a plankton community , 2015, The ISME Journal.

[77]  G. Schmitz,et al.  A rapid and quantitative LC-MS/MS method to profile sphingolipids , 2010, Journal of Lipid Research.

[78]  B. Fuchs,et al.  The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle , 2016, Nature Microbiology.

[79]  David Borland,et al.  Rainbow Color Map (Still) Considered Harmful , 2007 .

[80]  M. Voss,et al.  Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K‐ and r‐strategists , 2017, Environmental microbiology.

[81]  D. Newman,et al.  Heavy water and (15) N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats. , 2015, Environmental microbiology.

[82]  S. Young,et al.  The GPIHBP1-LPL complex is responsible for the margination of triglyceride-rich lipoproteins in capillaries. , 2014, Cell metabolism.

[83]  B. Keppler,et al.  Application of imaging mass spectrometry approaches to facilitate metal-based anticancer drug research. , 2017, Metallomics : integrated biometal science.

[84]  C. Grovenor,et al.  Development of a new bimodal imaging methodology: a combination of fluorescence microscopy and high‐resolution secondary ion mass spectrometry , 2010, Journal of microscopy.

[85]  D. Rittenberg,et al.  THE APPLICATION OF ISOTOPES TO THE STUDY OF INTERMEDIARY METABOLISM. , 1938, Science.

[86]  P. Weber,et al.  Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment , 2016, The ISME Journal.

[87]  S. Boxer,et al.  Quantitative analysis of supported membrane composition using the NanoSIMS , 2005 .

[88]  A. Benecke,et al.  50nm-Scale Localization of Single Unmodified, Isotopically Enriched, Proteins in Cells , 2013, PloS one.

[89]  P. Shewry,et al.  The dynamics of protein body formation in developing wheat grain , 2016, Plant biotechnology journal.

[90]  S. Boxer,et al.  Dynamic Reorganization and Correlation among Lipid Raft Components. , 2016, Journal of the American Chemical Society.

[91]  S. J. Thomson LXXXIII. Rays of positive electricity , 1910 .

[92]  H. Vali,et al.  Cyanobacterial diversity and activity in modern conical microbialites , 2012, Geobiology.

[93]  V. Orphan,et al.  Deep-Sea Archaea Fix and Share Nitrogen in Methane-Consuming Microbial Consortia , 2009, Science.

[94]  B. Willis,et al.  Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora , 2015, The ISME Journal.

[95]  A. Schintlmeister,et al.  Revisiting N2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach , 2014, The ISME Journal.

[96]  D. Herman,et al.  An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. , 2013, Environmental microbiology.

[97]  M. Kuypers,et al.  Co-occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland). , 2009, Environmental microbiology.

[98]  Natalie C. Sadler,et al.  Activity-based protein profiling of microbes. , 2015, Current opinion in chemical biology.

[99]  L. Lebrun,et al.  In situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella , 2015, The ISME Journal.

[100]  S. Dunlop,et al.  Changes in subtypes of Ca microdomains following partial injury to the central nervous system. , 2014, Metallomics : integrated biometal science.

[101]  R. Epand,et al.  Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization. , 2006, Biophysical journal.

[102]  A. Kleinfeld,et al.  Transport of 13C-oleate in adipocytes measured using multi imaging mass spectrometry , 2004, Journal of the American Society for Mass Spectrometry.

[103]  M. Kuypers,et al.  Measuring carbon and N2 fixation in field populations of colonial and free‐living unicellular cyanobacteria using nanometer‐scale secondary ion mass spectrometry1 , 2013, Journal of phycology.

[104]  P. Weber,et al.  Phylogenetic Patterns in the Microbial Response to Resource Availability: Amino Acid Incorporation in San Francisco Bay , 2014, PloS one.

[105]  Bostjan Likar,et al.  A review of 3D/2D registration methods for image-guided interventions , 2012, Medical Image Anal..

[106]  K. Takai,et al.  Cell-Specific Thioautotrophic Productivity of Epsilon-Proteobacterial Epibionts Associated with Shinkaia crosnieri , 2012, PloS one.

[107]  Y. Bashan,et al.  Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization) , 2016 .

[108]  G. Hieftje,et al.  Laser-ablation sampling for inductively coupled plasma distance-of-flight mass spectrometry , 2015 .

[109]  Roderick Boswell,et al.  High brightness inductively coupled plasma source for high current focused ion beam applications , 2006 .

[110]  Sander R Piersma,et al.  Subcellular imaging mass spectrometry of brain tissue. , 2005, Journal of mass spectrometry : JMS.

[111]  Lisa A Levin,et al.  Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea , 2014, Nature Communications.

[112]  J. Loscalzo,et al.  Quantitative imaging of selenoprotein with multi‐isotope imaging mass spectrometry (MIMS) , 2014, Surface and interface analysis : SIA.

[113]  W. Wanek,et al.  Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing , 2013, Proceedings of the National Academy of Sciences.

[114]  D. Caron,et al.  Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis , 2017, The ISME Journal.

[115]  H. Brismar,et al.  Study of protein and RNA in dendritic spines using multi‐isotope imaging mass spectrometry , 2014, Surface and interface analysis : SIA.

[116]  P. Weber,et al.  Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. , 2012, FEMS microbiology ecology.

[117]  James E. Evans,et al.  Cellular Delivery of Nanoparticles Revealed with Combined Optical and Isotopic Nanoscopy. , 2016, ACS nano.

[118]  Haluk Beyenal,et al.  Biofilm image reconstruction for assessing structural parameters , 2011, Biotechnology and bioengineering.

[119]  M. Kuypers,et al.  Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps , 2012, The ISME Journal.

[120]  M. Thelen,et al.  Cyanobacterial reuse of extracellular organic carbon in microbial mats , 2015, The ISME Journal.

[121]  S. Littmann,et al.  Methane oxidation coupled to oxygenic photosynthesis in anoxic waters , 2015, The ISME Journal.

[122]  Natalie C. Sadler,et al.  Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea , 2016, Applied and Environmental Microbiology.

[123]  S. Merchant,et al.  Sub-cellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas , 2014, Nature chemical biology.

[124]  A. Fahey Measurements of dead time and characterization of ion counting systems for mass spectrometry , 1998 .

[125]  Julie Misson,et al.  Use of phosphate to avoid uranium toxicity in Arabidopsis thaliana leads to alterations of morphological and physiological responses regulated by phosphate availability , 2009 .

[126]  Yasuhiro Yukawa,et al.  Absorption of Radionuclides from the Fukushima Nuclear Accident by a Novel Algal Strain , 2012, PloS one.

[127]  J. Audinot,et al.  Elemental mapping of Neuromelanin organelles of human Substantia Nigra: correlative ultrastructural and chemical analysis by analytical transmission electron microscopy and nano‐secondary ion mass spectrometry , 2016, Journal of neurochemistry.

[128]  E. Gontier,et al.  Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS. , 2016, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[129]  L. Mazéas,et al.  Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose , 2014, MicrobiologyOpen.

[130]  A. Meibom,et al.  Nutritional input from dinoflagellate symbionts in reef-building corals is minimal during planula larval life stage , 2016, Science Advances.

[131]  R. Amann,et al.  The effect of nutrients on carbon and nitrogen fixation by the UCYN-A–haptophyte symbiosis , 2014, The ISME Journal.

[132]  M. Steinhauser,et al.  Quantifying cell division with deuterated water and multi‐isotope imaging mass spectrometry (MIMS) , 2014, Surface and interface analysis : SIA.

[133]  E. Meyer,et al.  Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis. , 2012, The Review of scientific instruments.

[134]  E. Meyer,et al.  Combined SIMS‐SPM instrument for high sensitivity and high‐resolution elemental 3D analysis , 2013 .

[135]  D. Pastré,et al.  Free mRNA in excess upon polysome dissociation is a scaffold for protein multimerization to form stress granules , 2014, Nucleic acids research.

[136]  J. Crain,et al.  Nanoscale imaging reveals laterally expanding antimicrobial pores in lipid bilayers , 2013, Proceedings of the National Academy of Sciences.

[137]  D. Murphy,et al.  In Situ Mapping of Nutrient Uptake in the Rhizosphere Using Nanoscale Secondary Ion Mass Spectrometry1[OA] , 2009, Plant Physiology.

[138]  D. Rittenberg,et al.  THE NITROGEN ISOTOPE (N15) AS A TOOL IN THE STUDY OF THE INTERMEDIARY METABOLISM OF NITROGENOUS COMPOUNDS , 1937 .

[139]  P. Keeling,et al.  Correlated SEM, FIB-SEM, TEM, and NanoSIMS Imaging of Microbes from the Hindgut of a Lower Termite: Methods for In Situ Functional and Ecological Studies of Uncultivable Microbes , 2013, Microscopy and Microanalysis.

[140]  K. Downing,et al.  Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes , 2010, Proceedings of the National Academy of Sciences.

[141]  S. Boxer,et al.  Atomic Recombination in Dynamic Secondary Ion Mass Spectrometry Probes Distance in Lipid Assemblies: A Nanometer Chemical Ruler. , 2016, Journal of the American Chemical Society.

[142]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[143]  L. Hoffmann,et al.  Determination of oral uptake and biodistribution of platinum and chromium by the garden snail (Helix aspersa) employing nano-secondary ion mass-spectrometry. , 2013, Chemosphere.

[144]  Katarina Vrede,et al.  Elemental Composition (C, N, P) and Cell Volume of Exponentially Growing and Nutrient-Limited Bacterioplankton , 2002, Applied and Environmental Microbiology.

[145]  Thomas D Young,et al.  Tools for the Microbiome: Nano and Beyond. , 2015, ACS nano.

[146]  I. Fournier,et al.  MALDI-MS and NanoSIMS imaging techniques to study cnidarian-dinoflagellate symbioses. , 2015, Zoology.

[147]  D. Wacey In situ Morphologic, Elemental and Isotopic Analysis of Archean Life , 2014 .

[148]  D. Macleod,et al.  Color appearance depends on the variance of surround colors , 1997, Current Biology.

[149]  Martin Taubert,et al.  MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. , 2015, Journal of proteome research.

[150]  Gérald Larrouy-Maumus,et al.  Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection , 2014, PLoS pathogens.

[151]  F. Stadermann,et al.  QSA influences on isotopic ratio measurements , 2004 .

[152]  S. Joye,et al.  Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea. , 2014, Environmental microbiology.

[153]  A. Postle,et al.  Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila , 2015, Cell.

[154]  M. Thelen,et al.  Measuring Cyanobacterial Metabolism in Biofilms with NanoSIMS Isotope Imaging and Scanning Electron Microscopy (SEM). , 2017, Bio-protocol.

[155]  N. Smith,et al.  A high brightness source for nano-probe secondary ion mass spectrometry , 2008 .

[156]  Richard J A Goodwin,et al.  Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. , 2012, Journal of proteomics.

[157]  B. Bergman,et al.  Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea , 2010, The ISME Journal.

[158]  Hang Yu,et al.  Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction , 2016, Science.

[159]  M. Vrakking,et al.  High dynamic range bio-molecular ion microscopy with the Timepix detector. , 2011, Analytical chemistry.

[160]  B. Humbel,et al.  Subcellular Investigation of Photosynthesis-Driven Carbon Assimilation in the Symbiotic Reef Coral Pocillopora damicornis , 2015, mBio.

[161]  D. Newman,et al.  Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum , 2015, Proceedings of the National Academy of Sciences.

[162]  J. Zimmerberg,et al.  Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts , 2013, Proceedings of the National Academy of Sciences.

[163]  G. Enikolopov,et al.  Brain stem cell division and maintenance studied using multi‐isotope imaging mass spectrometry (MIMS) , 2014, Surface and interface analysis : SIA.

[164]  A. Harris,et al.  Stable isotope imaging of biological samples with high resolution secondary ion mass spectrometry and complementary techniques. , 2014, Methods.

[165]  Keith D. Morrison,et al.  Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance , 2016, Scientific Reports.

[166]  D. Le Paslier,et al.  Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation , 2014, Science.

[167]  Gérald Larrouy-Maumus,et al.  Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate , 2013, Nature chemical biology.

[168]  S. Hoffer,et al.  High mass resolution SIMS , 2004 .

[169]  G. Chadwick,et al.  Single cell activity reveals direct electron transfer in methanotrophic consortia , 2015, Nature.

[170]  Virginia Menezes,et al.  Surveillance and monitoring system using Raspberry Pi and SimpleCV , 2015, 2015 International Conference on Green Computing and Internet of Things (ICGCIoT).

[171]  Stephen M. Pizer,et al.  2D/3D image registration using regression learning , 2013, Comput. Vis. Image Underst..

[172]  Approaches to increasing analytical throughput of human samples with multi‐isotope imaging mass spectrometry , 2014, Surface and interface analysis : SIA.

[173]  B. Willis,et al.  Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria , 2017, eLife.

[174]  J. Zimmerberg,et al.  Sphingolipid Domains in the Plasma Membranes of Fibroblasts Are Not Enriched with Cholesterol* , 2013, The Journal of Biological Chemistry.

[175]  Ashok Samal,et al.  Automatic recognition and analysis of human faces and facial expressions: a survey , 1992, Pattern Recognit..

[176]  L. Hoffmann,et al.  Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium , 2015, Particle and Fibre Toxicology.

[177]  C. Lechene,et al.  In-situ imaging mass spectrometry analysis of melanin granules in the human hair shaft. , 2004, The Journal of investigative dermatology.

[178]  D. Murphy,et al.  Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation , 2014, The New phytologist.

[179]  H. Vali,et al.  HO‐1‐mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues , 2009, Journal of neurochemistry.

[180]  D. Léonard,et al.  Use of Post-Ionisation Techniques to Complement SIMS Analysis. A Review With Practical Aspects , 1998 .

[181]  Quantitative imaging of inositol distribution in yeast using multi‐isotope imaging mass spectrometry (MIMS) , 2014, Surface and interface analysis : SIA.

[182]  E. Trembath-Reichert,et al.  Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses , 2015, The ISME Journal.

[183]  P. Patwari,et al.  Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance. , 2014, Cell metabolism.

[184]  L. Hoffmann,et al.  Uptake visualization of deltamethrin by NanoSIMS and acute toxicity to the water flea Daphnia magna. , 2009, Chemosphere.

[185]  G. Nolan,et al.  Mass Cytometry: Single Cells, Many Features , 2016, Cell.

[186]  S. Boxer,et al.  Colocalization of the ganglioside G(M1) and cholesterol detected by secondary ion mass spectrometry. , 2013, Journal of the American Chemical Society.

[187]  B. Harte,et al.  SIMS stable isotope measurement: counting statistics and analytical precision , 2000, Mineralogical Magazine.

[188]  D. L. Alexander,et al.  Highly Dynamic Cellular-Level Response of Symbiotic Coral to a Sudden Increase in Environmental Nitrogen , 2013, mBio.

[189]  J. Guerquin-Kern,et al.  Aceruloplasminemia: retinal histopathologic manifestations and iron-mediated melanosome degradation. , 2011, Archives of ophthalmology.

[190]  S. Boxer,et al.  Supported membrane composition analysis by secondary ion mass spectrometry with high lateral resolution. , 2005, Biophysical journal.

[191]  E. Neher,et al.  Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus , 2016, Molecular Psychiatry.

[192]  G. Knott,et al.  NanoSIMS analysis of an isotopically labelled organometallic ruthenium(II) drug to probe its distribution and state in vitro. , 2015, Chemical communications.

[193]  D. Murphy,et al.  Application of nanoscale secondary ion mass spectrometry to plant cell research , 2010, Plant signaling & behavior.

[194]  N. Dalleska,et al.  Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane , 2013, The ISME Journal.

[195]  S. Tringe,et al.  Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics , 2012, The ISME Journal.

[196]  R. Amann,et al.  Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems. , 2014, FEMS microbiology ecology.

[197]  Martin Ackermann,et al.  Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments , 2016, Nature Microbiology.

[198]  P. Cook,et al.  Most Human Proteins Made in Both Nucleus and Cytoplasm Turn Over within Minutes , 2014, PloS one.

[199]  H. Vali,et al.  Unregulated brain iron deposition in transgenic mice over‐expressing HMOX1 in the astrocytic compartment , 2012, Journal of neurochemistry.

[200]  M. Simunovic,et al.  Acquired color vision deficiency. , 2016, Survey of ophthalmology.

[201]  C. Lechene,et al.  Measure of carbon and nitrogen stable isotope ratios in cultured cells , 2004, Journal of the American Society for Mass Spectrometry.

[202]  Richard T. Lee,et al.  Imaging mass spectrometry demonstrates age-related decline in human adipose plasticity. , 2017, JCI insight.

[203]  C. Leyval,et al.  Dynamics of PAHs and derived organic compounds in a soil-plant mesocosm spiked with 13C-phenanthrene. , 2017, Chemosphere.

[204]  A. Benninghoven,et al.  Secondary Ion Mass Spectrometry SIMS V , 1986 .

[205]  C. Lechene,et al.  Detection of immunolabels with multi‐isotope imaging mass spectrometry , 2014, Surface and interface analysis : SIA.

[206]  A. Sessions,et al.  Experimental determination of carbonate‐associated sulfate δ34S in planktonic foraminifera shells , 2014 .

[207]  S. McGrath,et al.  Combined NanoSIMS and synchrotron X-ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. , 2014, The New phytologist.

[208]  Sinem K. Saka,et al.  A contamination-insensitive probe for imaging specific biomolecules by secondary ion mass spectrometry. , 2015, Chemical communications.

[209]  E. Hindié,et al.  Mapping the cellular distribution of labelled molecules by SIMS microscopy , 1992, Biology of the cell.

[210]  R. Amann,et al.  In situ identification and N₂ and C fixation rates of uncultivated cyanobacteria populations. , 2013, Systematic and applied microbiology.

[211]  S. Boxer,et al.  Phase Separation of Lipid Membranes Analyzed with High-Resolution Secondary Ion Mass Spectrometry , 2006, Science.

[212]  Jennifer Pett-Ridge,et al.  Mineral protection of soil carbon counteracted by root exudates , 2015 .

[213]  G. Knott,et al.  Imaging the time-integrated cerebral metabolic activity with subcellular resolution through nanometer-scale detection of biosynthetic products deriving from 13C-glucose , 2015, Journal of Chemical Neuroanatomy.

[214]  Samuel E. Senyo,et al.  Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry , 2011, Nature.

[215]  L. Hoffmann,et al.  Ag nanoparticles: size- and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS , 2012, Nanotoxicology.

[216]  L. Paša-Tolić,et al.  C60 secondary ion Fourier transform ion cyclotron resonance mass spectrometry. , 2011, Analytical chemistry.

[217]  C. Unkefer,et al.  CN− secondary ions form by recombination as demonstrated using multi-isotope mass spectrometry of 13C- and 15N-labeled polyglycine , 2006, Journal of the American Society for Mass Spectrometry.

[218]  D. Wolf-Gladrow,et al.  Carbon, nitrogen and O2 fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic Sea , 2011, The ISME Journal.

[219]  D. Wangpraseurt,et al.  Light microenvironment and single-cell gradients of carbon fixation in tissues of symbiont-bearing corals , 2015, The ISME Journal.

[220]  Krzysztof Z. Gajos,et al.  Evaluation of Artery Visualizations for Heart Disease Diagnosis , 2011, IEEE Transactions on Visualization and Computer Graphics.

[221]  P. Raimbault,et al.  Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific , 2017, Scientific Reports.

[222]  S. McGrath,et al.  High resolution SIMS analysis of arsenic in rice , 2013 .

[223]  R. Popa,et al.  Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry , 2009, Proceedings of the National Academy of Sciences.

[224]  B. Wehrli,et al.  Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes , 2015, PloS one.

[225]  H. Harada,et al.  Gold-ISH: a nano-size gold particle-based phylogenetic identification compatible with NanoSIMS. , 2014, Systematic and applied microbiology.

[226]  J. Grotzinger,et al.  Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism , 2012, Proceedings of the National Academy of Sciences.

[227]  H. Tomaru,et al.  Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor , 2015, Science.

[228]  Douglas Benson,et al.  High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry , 2006, Journal of biology.

[229]  Xiaotong Peng,et al.  Coexistence of Fe(II)- and Mn(II)-oxidizing bacteria govern the formation of deep sea umber deposits , 2015 .

[230]  Matthew H Todd,et al.  Open science is a research accelerator. , 2011, Nature chemistry.

[231]  Eric O Long,et al.  Zinc-Induced Polymerization of Killer-Cell Ig-like Receptor into Filaments Promotes Its Inhibitory Function at Cytotoxic Immunological Synapses. , 2016, Molecular cell.

[232]  Robert Gentleman,et al.  Statistical Analyses and Reproducible Research , 2007 .

[233]  M. Tester,et al.  Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry , 2014 .

[234]  J. McClelland,et al.  Cold atomic beam ion source for focused ion beam applications , 2013 .

[235]  P. Weber,et al.  Three-dimensional imaging of cholesterol and sphingolipids within a Madin-Darby canine kidney cell. , 2016, Biointerphases.

[236]  J. Zimmerberg,et al.  Hemagglutinin clusters in the plasma membrane are not enriched with cholesterol and sphingolipids. , 2015, Biophysical journal.

[237]  M. Kuypers,et al.  Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses , 2011, The ISME Journal.

[238]  E. Hauri,et al.  High-precision analysis of multiple sulfur isotopes using NanoSIMS , 2016 .

[239]  T. Aubert,et al.  Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. , 2012, Journal of hazardous materials.

[240]  Gerhard Kminek,et al.  Epifluorescence, SEM, TEM and nanoSIMS image analysis of the cold phenotype of Clostridium psychrophilum at subzero temperatures. , 2014, FEMS microbiology ecology.

[241]  A. Schintlmeister,et al.  A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reef-building corals. , 2015, Environmental microbiology.

[242]  S. Derenne,et al.  Incorporation of 13C labelled shoot residues in Lumbricus terrestris casts: A combination of transmission electron microscopy and nanoscale secondary ion mass spectrometry , 2016 .

[243]  L. Paša-Tolić,et al.  High mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry for biological tissue imaging , 2013, Analytical and Bioanalytical Chemistry.

[244]  E. Meyer,et al.  Three dimensional imaging using secondary ion mass spectrometry and atomic force microscopy , 2011 .

[245]  G. Jensen,et al.  The Helical MreB Cytoskeleton in Escherichia coli MC1000/pLE7 Is an Artifact of the N-Terminal Yellow Fluorescent Protein Tag , 2012, Journal of bacteriology.

[246]  D. Tirrell,et al.  In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry , 2014, Environmental microbiology.

[247]  R. Amann,et al.  HISH-SIMS analysis of bacterial uptake of algal-derived carbon in the Río de la Plata estuary. , 2012, Systematic and applied microbiology.

[248]  Stefan Reckow,et al.  Segmentation of Multi-Isotope Imaging Mass Spectrometry Data for Semi-Automatic Detection of Regions of Interest , 2012, PloS one.

[249]  Richard T. Lee,et al.  Mammalian Heart Renewal by Preexisting Cardiomyocytes , 2012, Nature.

[250]  D. Arizteguí,et al.  Organomineralization processes in freshwater stromatolites: a living example from eastern Patagonia , 2015 .

[251]  A. Spormann,et al.  Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats , 2013, Front. Microbiol..

[252]  E. Hindié,et al.  SIMS microscopy: a tool to measure the intracellular concentration of carbon 14‐labelled molecules , 1992, Biology of the cell.

[253]  M. Kuypers,et al.  Viral infection of Phaeocystis globosa impedes release of chitinous star-like structures: quantification using single cell approaches. , 2013, Environmental microbiology.

[254]  J. Audinot,et al.  Copper(II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. , 2012, Nanoscale.

[255]  R. Danovaro,et al.  Viruses as new agents of organomineralization in the geological record , 2014, Nature Communications.

[256]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[257]  D. Schmidt,et al.  Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale , 2016, Scientific Reports.

[258]  M. Hawkesford,et al.  High-Resolution Secondary Ion Mass Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice Roots1[C][W][OA] , 2011, Plant Physiology.

[259]  H. Migeon,et al.  Ion microscope and ion microprobe analysis under oxygen, cesium and gallium bombardment , 1995 .

[260]  O. Lavastre,et al.  Visualization and localization of bromotoluene distribution in Hedera helix using NanoSIMS. , 2012, Chemosphere.

[261]  Jing Li Wang,et al.  Color image segmentation: advances and prospects , 2001, Pattern Recognit..

[262]  M. Kuypers,et al.  Biofilms on glacial surfaces: hotspots for biological activity , 2016, npj Biofilms and Microbiomes.

[263]  M. Lucassen,et al.  Color Constancy under Natural and Artificial Illumination , 1996, Vision Research.

[264]  J. Middelburg,et al.  Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments , 2015, The ISME Journal.

[265]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[266]  A. Spormann,et al.  Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis , 2012, The ISME Journal.

[267]  P. Weber,et al.  Spatially Resolved Characterization of Water and Ion Incorporation in Bacillus Spores , 2010, Applied and Environmental Microbiology.

[268]  Andreas Richter,et al.  Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil , 2011, Proceedings of the National Academy of Sciences.

[269]  Laura D. Hughes,et al.  Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers , 2014, PloS one.

[270]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[271]  David P. Corey,et al.  Multi-isotope imaging mass spectrometry (MIMS) reveals slow protein turnover in hair-cell stereocilia , 2011, Nature.

[272]  P. Weber,et al.  Fluorinated colloidal gold immunolabels for imaging select proteins in parallel with lipids using high-resolution secondary ion mass spectrometry. , 2012, Bioconjugate chemistry.

[273]  Sinem K. Saka,et al.  Secondary-Ion Mass Spectrometry of Genetically Encoded Targets , 2015, Angewandte Chemie.

[274]  M. Kuypers,et al.  Recent advances in marine N-cycle studies using 15N labeling methods. , 2016, Current opinion in biotechnology.