The Earth’s Magnetosphere: A Systems Science Overview and Assessment

A systems science examination of the Earth’s fully interconnected dynamic magnetosphere is presented. Here the magnetospheric system (a.k.a. the magnetosphere–ionosphere–thermosphere system) is considered to be comprised of 14 interconnected subsystems, where each subsystem is a characteristic particle population: 12 of those particle populations are plasmas and two (the atmosphere and the hydrogen geocorona) are neutrals. For the magnetospheric system, an assessment is made of the applicability of several system descriptors, such as adaptive, nonlinear, dissipative, interdependent, open, irreversible, and complex. The 14 subsystems of the magnetospheric system are cataloged and described, and the various types of magnetospheric waves that couple the behaviors of the subsystems to each other are explained. This yields a roadmap of the connectivity of the magnetospheric system. Various forms of magnetospheric activity beyond geomagnetic activity are reviewed, and four examples of emergent phenomena in the Earth’s magnetosphere are presented. Prior systems science investigations of the solar-wind-driven magnetospheric system are discussed: up to the present these investigations have not accounted for the full interconnectedness of the system. This overview and assessment of the Earth’s magnetosphere hopes to facilitate (1) future global systems science studies that involve the entire interconnected magnetospheric system with its diverse time and spatial scales and (2) connections of magnetospheric systems science with the broader Earth systems science.

[1]  R. Funase,et al.  Ecliptic North‐South Symmetry of Hydrogen Geocorona , 2017 .

[2]  A. Sharma,et al.  Nonequilibrium Phenomena in the Magnetosphere , 2005 .

[3]  Daniel N. Baker,et al.  Phase transition‐like behavior of the magnetosphere during substorms , 2000 .

[4]  G. Lakhina Solar wind-magnetosphere-ionosphere coupling and chaotic dynamics , 1994 .

[5]  J. Borovsky,et al.  Compacting the Description of a Time-Dependent Multivariable System and Its Time-Dependent Multivariable Driver by Reducing the System and Driver State Vectors to Aggregate Scalars: The Earth’s Solar-Wind-Driven Magnetosphere , 2019 .

[6]  J. Fejer On the magnetosphere , 1973 .

[7]  Takahiro Obara,et al.  Relativistic electron dynamics in the inner magnetosphere — a review , 2002 .

[8]  George E. Mobus,et al.  Principles of Systems Science , 2014 .

[9]  Wendell Horton,et al.  A Low-Dimensional Dynamical Model for the Solar Wind Driven Geotail-Ionosphere System , 1998 .

[10]  Z. Voros,et al.  Neural network prediction of geomagnetic activity: a method using local H\"{o}lder exponents , 2004, physics/0411062.

[11]  R. Horne,et al.  Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves , 2007 .

[12]  Sandra C. Chapman,et al.  Is the dynamic magnetosphere an avalanching system? , 2000 .

[13]  Michael J. Rycroft,et al.  The global atmospheric electric circuit, solar activity and climate change , 2000 .

[14]  Joseph E. Borovsky,et al.  Exploration of a Composite Index to Describe Magnetospheric Activity: Reduction of the Magnetospheric State Vector to a Single Scalar , 2018, Journal of Geophysical Research: Space Physics.

[15]  M. Lockwood,et al.  Predicting space climate change , 2011 .

[16]  L. Kistler,et al.  On the Role of Ionospheric Ions in Sawtooth Events , 2016 .

[17]  J. Birn,et al.  On the cessation of magnetic reconnection , 2002 .

[18]  Konstantinos Papadopoulos,et al.  Reconstruction of low‐dimensional magnetospheric dynamics by singular spectrum analysis , 1993 .

[19]  J. Birn,et al.  Thin current sheets and loss of equilibrium: Three‐dimensional theory and simulations , 2004 .

[20]  A. Rigas,et al.  Chaos and magnetospheric dynamics , 1994 .

[21]  Joseph E. Borovsky,et al.  Canonical correlation analysis of the combined solar wind and geomagnetic index data sets , 2014 .

[22]  J. Borovsky,et al.  A density-temperature description of the outer electron radiation belt during geomagnetic storms , 2010 .

[23]  J. Keyser,et al.  The Earth's plasmasphere : a cluster and image perspective , 2009 .

[24]  D. Stern A brief history of magnetospheric physics during the space age , 1996 .

[25]  Xiaojun Duan,et al.  Systems Science: Methodological Approaches , 2012 .

[26]  J. Chum,et al.  Propagation of whistler-mode chorus to low altitudes: divergent ray trajectories and ground accessibility , 2005 .

[27]  Yu. I. Yermolaev,et al.  Spatial variation of eddy-diffusion coefficients in the turbulent plasma sheet during substorms , 2009 .

[28]  J. Borovsky Feedback of the Magnetosphere , 2014, Science.

[29]  D. Baker,et al.  The Role of Self-Organized Criticality in the Substorm Phenomenon and its Relation to Localized Reconnection in the Magnetospheric Plasma Sheet , 1999 .

[30]  M. Sinnhuber,et al.  Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere , 2012, Surveys in Geophysics.

[31]  E. Sutton,et al.  Predicting global average thermospheric temperature changes resulting from auroral heating , 2011 .

[32]  C. Goertz,et al.  Chaos in the plasma sheet , 1991 .

[33]  Daniel T. Welling,et al.  Validation of SWMF magnetic field and plasma , 2010 .

[34]  D. May,et al.  Evolution into the stagnant lid convection regime with a non‐Newtonian water ice rheology , 2004 .

[35]  J. Borovsky,et al.  The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high‐speed stream‐driven storms , 2016 .

[36]  A. Sharma Complexity in nature and data-enabled science: The Earth's magnetosphere , 2014 .

[37]  Massimo Materassi,et al.  An information theory approach to the storm-substorm relationship , 2011 .

[38]  Hysteresis Provides Self-Organization in a Plasma Model , 2006 .

[39]  George L. Siscoe,et al.  The Solar–Terrestrial Environment , 1995 .

[40]  Daniel N. Baker,et al.  The organized nonlinear dynamics of the magnetosphere , 1996 .

[41]  V. M. Ghete,et al.  Observation of the Associated Production of a Single Top Quark and a W Boson in pp Collisions at √s=8 TeV , 2014, 1401.2942.

[42]  John Lyon,et al.  The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code , 2004 .

[43]  Stanislav Boldyrev Spectrum of magnetohydrodynamic turbulence. , 2006, Physical review letters.

[44]  Dimitris Vassiliadis,et al.  System identification, modeling, and prediction for space weather environments , 2000 .

[45]  G. Siscoe,et al.  An MHD model for the complete open magnetotail boundary , 1987 .

[46]  D. Baker,et al.  Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt , 2014 .

[47]  A. Jursa,et al.  Handbook of geophysics and the space environment , 1985 .

[48]  A. J. Ribeiro,et al.  Statistical study of the effect of solar wind dynamic pressure fronts on the dayside and nightside ionospheric convection , 2011 .

[49]  C. Rodger,et al.  Precipitating radiation belt electrons and enhancements of mesospheric hydroxyl during 2004-2009 , 2012 .

[50]  A. Runov,et al.  Average thermodynamic and spectral properties of plasma in and around dipolarizing flux bundles , 2015 .

[51]  J. Lamarque,et al.  Multimodel ensemble simulations of present-day and near-future tropospheric ozone , 2006 .

[52]  M. Zuber,et al.  Low‐degree structure in Mercury's planetary magnetic field , 2012 .

[53]  Daniel N. Baker,et al.  Reconnection and scale‐free avalanching in a driven current‐sheet model , 2004 .

[54]  D. Boscher,et al.  SALAMMBO: A three‐dimensional simulation of the proton radiation belt , 1995 .

[55]  G. Reeves,et al.  Direct observation of radiation-belt electron acceleration from electron-volt energies to megavolts by nonlinear whistlers. , 2014, Physical review letters.

[56]  William Rosenblum,et al.  The language laboratory supplements the classroom recitation , 1977 .

[57]  N. Watkins,et al.  Robustness and scaling: key observables in the complex dynamic magnetosphere , 2004 .

[58]  D. Jankovičová,et al.  Nonlinear Processes in Geophysics Neural Network Prediction of Geomagnetic Activity: a Method Using Local Hölder Exponents , 2022 .

[59]  R. Jayanth,et al.  たんぱく質の幾何:水素結合,立体構造および周辺コンパクトチューブ , 2006 .

[60]  D. Baker,et al.  Data‐derived analogues of the magnetospheric dynamics , 1997 .

[61]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[62]  A. Loarte,et al.  Nonlinear MHD simulations of QH-mode DIII-D plasmas and implications for ITER high Q scenarios , 2017 .

[63]  Tatsundo Yamamoto,et al.  On the temporal fluctuations of pulsating auroral luminosity , 1988 .

[64]  F. Mozer,et al.  Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection , 1983 .

[65]  R. Elphic,et al.  Inner edge of the electron plasma sheet: Empirical models of boundary location , 1999 .

[66]  R. Elphic,et al.  The Magnetospheric Trough , 1997 .

[67]  Evaluation on the analogy between the dynamic magnetosphere and a forced and/or self-organized critical system , 2002 .

[68]  J. Makela,et al.  Redistribution of H atoms in the upper atmosphere during geomagnetic storms , 2017 .

[69]  C. Clauer,et al.  Statistical maps of geomagnetic perturbations as a function of the interplanetary magnetic field , 2010 .

[70]  C. Russell,et al.  Cold ion beams in the low latitude boundary layer during accelerated flow events , 1990 .

[71]  Y. Kasahara,et al.  Spatial distribution and temporal variations of occurrence frequency of lightning whistlers observed by VLF/WBA onboard Akebono , 2014 .

[72]  H. Singer,et al.  Solar wind and magnetospheric conditions leading to the abrupt loss of outer radiation belt electrons , 2007 .

[73]  Matt A. King,et al.  Location for direct access to subglacial Lake Ellsworth: An assessment of geophysical data and modeling , 2010 .

[74]  Frederick J. Rich,et al.  A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables , 2007 .

[75]  T. Tanaka,et al.  Magnetosphere–Ionosphere Convection as a Compound System , 2007 .

[76]  A. Boneva,et al.  Impact of magnetic clouds on the middle atmosphere and geomagnetic disturbances , 2005 .

[77]  J. Borovsky,et al.  Preface: Unsolved problems of magnetospheric physics , 2016 .

[78]  David Rousseau,et al.  Systems Research and the Quest for Scientific Systems Principles , 2017, Syst..

[79]  S. Fung,et al.  Magnetospheric state of sawtooth events , 2016 .

[80]  I. Sandahl The CUSP as a source of plasma for the magnetosphere , 2003 .

[81]  V. Sergeev,et al.  MT-index — A possible new index to characterize the configuration of the magnetotail , 1996 .

[82]  D. Evans,et al.  Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power , 2008 .

[83]  J. Lyon,et al.  The effects of plasmaspheric plumes on dayside reconnection , 2016 .

[84]  J. Valdivia,et al.  Contribution of Latin–American scientists to the study of the magnetosphere of the Earth. A review , 2016 .

[85]  Lyon,et al.  The solar wind-magnetosphere-ionosphere system , 2000, Science.

[86]  J. B. Blake,et al.  Correlation of changes in the outer‐zone relativistic‐electron population with upstream solar wind and magnetic field measurements , 1997 .

[87]  D. H. Fairfield,et al.  Average and unusual locations of the Earth's magnetopause and bow shock , 1971 .

[88]  Juan Alejandro Valdivia,et al.  Prediction of magnetic storms by nonlinear models , 1996 .

[89]  R. J. Gamble,et al.  Radiation belt electron precipitation due to geomagnetic storms: Significance to middle atmosphere ozone chemistry , 2010 .

[90]  J. Tamminen,et al.  Impact of different energies of precipitating particles on NOx generation in the middle and upper atmosphere during geomagnetic storms , 2009 .

[91]  W. P. Olson,et al.  A quantitative model of the magnetospheric magnetic field , 1974 .

[92]  Nikolai Østgaard,et al.  Neutral hydrogen density profiles derived from geocoronal imaging , 2003 .

[93]  M. Thomsen,et al.  Ring/Shell Ion Distributions at Geosynchronous Orbit , 2017 .

[94]  J. Slavin,et al.  The Earth: Plasma Sources, Losses, and Transport Processes , 2015 .

[95]  T. Gombosi Physics of the Space Environment , 1998 .

[96]  Peter Brauer,et al.  Field‐aligned currents' scale analysis performed with the Swarm constellation , 2014 .

[97]  R. Denton,et al.  Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism , 2018 .

[98]  I. J. Rae,et al.  A new technique for determining Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE) , 2015, 1606.02651.

[99]  G. Consolini,et al.  Multifractal structure of auroral electrojet index data. , 1996, Physical review letters.

[100]  Robert L. McPherron,et al.  Satellite studies of magnetospheric substorms on August 15, 1968. IX - Phenomenological model for substorms. , 1973 .

[101]  M. Gruntman,et al.  Observations of exosphere variations during geomagnetic storms , 2013 .

[102]  L. Přech,et al.  The magnetopause shape and location: a comparison of the Interball and Geotail observations with models , 2002 .

[103]  D. Baker,et al.  Correlation of Changes in the Outer-Zone Relativistic-Electron Population with Upstream Solar Wind Measurements , 1997 .

[104]  J. Valdivia,et al.  The magnetosphere as a complex system , 2005 .

[105]  T. Tanaka,et al.  Why does substorm-associated auroral surge travel westward? , 2017 .

[106]  D. Mccomas,et al.  Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique , 2003 .

[107]  J. Birn,et al.  Substorm electron injections: Geosynchronous observations and test particle simulations , 1998 .

[108]  C. Russell,et al.  Near-Earth magnetotail shape and size as determined from the magnetopause flaring angle , 1996 .

[109]  C. Moore,et al.  Automatic filters for the detection of coherent structure in spatiotemporal systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[110]  Daniel N. Baker,et al.  A quantitative assessment of energy storage and release in the Earth's magnetotail , 1997 .

[111]  T. Moore,et al.  Observations of the warm plasma cloak and an explanation of its formation in the magnetosphere , 2008 .

[112]  G. Siscoe Aspects of global coherence of magnetospheric behavior , 2011 .

[113]  C. Kennel,et al.  Pitch-angle diffusion of radiation belt electrons within the plasmasphere. , 1972 .

[114]  M. Parrot,et al.  Propagation of equatorial noise to low altitudes: Decoupling from the magnetosonic mode , 2016 .

[115]  G. Reid Magnetosphere Ionosphere Coupling , 1976 .

[116]  B. Lamb,et al.  Numerical modeling of windblown dust in the Pacific Northwest with improved meteorology and dust emission models , 2004 .

[117]  Yuri Shprits,et al.  Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport , 2008 .

[118]  G. Consolini,et al.  Rank ordering multifractal analysis of the auroral electrojet index , 2011 .

[119]  C. Goertz,et al.  On the embedding‐dimension analysis of AE and AL time series , 1991 .

[120]  M. Freeman,et al.  Recurrent substorm activity during the passage of a corotating interaction region , 2009 .

[121]  George L. Siscoe,et al.  Aspects of data assimilation peculiar to space weather forecasting , 2006 .

[122]  E. W. Hones,et al.  Three‐dimensional computer modeling of dynamic reconnection in the geomagnetic tail , 1981 .

[123]  L. Chang,et al.  Response of the thermosphere and ionosphere to an ultra fast Kelvin wave , 2010 .

[124]  J. Lemaire,et al.  The Earth's Plasmasphere: Frontmatter , 1998 .

[125]  R. Horne,et al.  Modeling the evolution of chorus waves into plasmaspheric hiss , 2011 .

[126]  A. Sharma,et al.  Combining global and multi-scale features in a description of the solar wind-magnetosphere coupling , 2003 .

[127]  G. Murakami,et al.  The geocoronal responses to the geomagnetic disturbances , 2017 .

[128]  A. Nishida The Earth's Dynamic Magnetotail , 2000 .

[129]  J. Borovsky,et al.  Electron loss rates from the outer radiation belt caused by the filling of the outer plasmasphere: the calm before the storm , 2009 .

[130]  G. Siscoe,et al.  MHD Simulation of Magnetospheric Transport at the Mesoscale , 2013 .

[131]  Robert A. Smith,et al.  Thermal catastrophe in the plasma sheet boundary layer. [in substorm models] , 1986 .

[132]  F. R. Toffolettoa,et al.  RCM meets LFM : initial results of one-way coupling , 2009 .

[133]  A. Keiling Alfvén Waves and Their Roles in the Dynamics of the Earth’s Magnetotail: A Review , 2009 .

[134]  Z. Kaymaz IMP 8 magnetosheath field comparisons with models , 1998 .

[135]  V. Angelopoulos,et al.  Pulsating aurora from electron scattering by chorus waves , 2018, Nature.

[136]  M. Freeman,et al.  A minimal substorm model that explains the observed statistical distribution of times between substorms , 2004 .

[137]  J. Valdivia,et al.  Solar wind thermally induced magnetic fluctuations. , 2014, Physical review letters.

[138]  J. Lyon,et al.  Properties of outflow‐driven sawtooth substorms , 2012 .

[139]  T. Killeen,et al.  The solar-cycle-dependent response of the thermosphere to geomagnetic storms , 2004 .

[140]  Tsugunobu Nagai,et al.  The Comprehensive Inner Magnetosphere‐Ionosphere Model , 2014 .

[141]  A. Wright Transfer of magnetosheath momentum and energy to the ionosphere along open field lines , 1996 .

[142]  R. Lysak Electrodynamic coupling of the magnetosphere and ionosphere , 1990 .

[143]  Daniel T. Welling,et al.  Modeling ionospheric outflows and their impact on the magnetosphere, initial results , 2009 .

[144]  R. Horne,et al.  Energetic outer zone electron loss timescalesduring low geomagnetic activity , 2006 .

[145]  E. Cliver,et al.  Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000 , 2001 .

[146]  X. Sanchez‐Vila,et al.  Representative hydraulic conductivities in saturated groundwater flow , 2006 .

[147]  V. Angelopoulos,et al.  THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic pressure , 2012 .

[148]  Na Liu,et al.  Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow , 2010 .

[149]  W. Horton,et al.  The dynamics of storms and substorms with the WINDMI model , 2006 .

[150]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[151]  A. Richmond,et al.  Thermospheric response to a magnetic substorm , 1975 .

[152]  Richard G. Derwent,et al.  Effect of stratosphere‐troposphere exchange on the future tropospheric ozone trend , 2003 .

[153]  K. Powell,et al.  Magnetospheric configuration for Parker-spiral IMF conditions: Results of a 3D AMR MHD simulation , 2000 .

[154]  E. Antonova Storm-substorm relations and high latitude currents , 2002 .

[155]  Timothy Fuller-Rowell,et al.  Response of the thermosphere and ionosphere to geomagnetic storms , 1994 .

[156]  M. Panasyuk The Ion Radiation Belts: Experiments and Models , 2004 .

[157]  Richard M. Thorne,et al.  Radiation belt dynamics: The importance of wave‐particle interactions , 2010 .

[158]  V. Uritsky,et al.  Self-organization in a current sheet model , 2003 .

[159]  J. Sauvaud,et al.  Magnetic storm modeling in the Earth's electron belt by the Salammbô code , 1996 .

[160]  Joseph E. Borovsky,et al.  Auroral arc thicknesses as predicted by various theories , 1993 .

[161]  L. P. Karakatsanis,et al.  Complexity in Space Plasmas: Universality of Non‐Equilibrium Physical Processes , 2011 .

[162]  The Magnetosphere: A Complex Driven System , 2010 .

[163]  Maria M. Kuznetsova,et al.  Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere , 2009 .

[164]  B. Ni,et al.  Electron scattering by whistler-mode ELF hiss in , 2008 .

[165]  R. Horne,et al.  Evidence for chorus‐driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods , 2003 .

[166]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[167]  Patrick T. Newell,et al.  Pairs of solar wind‐magnetosphere coupling functions: Combining a merging term with a viscous term works best , 2008 .

[168]  Robert A. Smith,et al.  The thermal catastrophe model of substorms , 1989 .

[169]  C. Rodger,et al.  Linkages between the radiation belts, polar atmosphere and climate: Electron precipitation through wave particle interactions , 2016 .

[170]  R. Nemzek,et al.  Substorm statistics: Occurrences and amplitudes , 1994 .

[171]  P. Cassak,et al.  The local dayside reconnection rate for oblique interplanetary magnetic fields , 2016, 1604.08528.

[172]  V. Uritsky,et al.  Geomagnetic substorms as perturbed self-organized critical dynamics of the magnetosphere , 2001 .

[173]  J. Sauvaud,et al.  Modeling the high‐energy proton belt , 1999 .

[174]  S. Solomon,et al.  Altitude variations of the horizontal thermospheric winds during geomagnetic storms , 2008 .

[175]  M. Scourfield,et al.  Spatial coherency in pulsating aurora , 1972 .

[176]  Modelling the outer radiation belt as a complex system in a self-organised critical state , 2005 .

[177]  M. Rees Physics and Chemistry of the Upper Atmosphere , 1989 .

[178]  J. Steinberg,et al.  The Calm before the Storm in CIR/Magnetosphere Interactions , 2006 .

[179]  I. Szunyogh,et al.  Nonlinear Processes in Geophysics Testing the Hypothesis of the Earth's Magnetosphere Behaving like an Avalanching System Part of Special Issue " Nonlinear Processes in Solar-terrestrial Physics and Dynamics of Earth-ocean-system " , 2022 .

[180]  J. Borovsky,et al.  Estimating the effects of ionospheric plasma on solar wind/magnetosphere coupling via mass loading of dayside reconnection: Ion‐plasma‐sheet oxygen, plasmaspheric drainage plumes, and the plasma cloak , 2013 .

[181]  A. Burns,et al.  Wind and temperature effects on thermosphere mass density response to the November 2004 geomagnetic storm , 2010 .

[182]  S. Markidis,et al.  Specification of the near-Earth space environment with SHIELDS , 2018, Journal of Atmospheric and Solar-Terrestrial Physics.

[183]  R. A. Smith,et al.  Prediction of geomagnetic activity , 1993 .

[184]  Michael J. Rycroft,et al.  Recent advances in global electric circuit coupling between the space environment and the troposphere , 2012 .

[185]  Magnetic turbulence in the plasma sheet , 2004, physics/0411230.

[186]  J. Borovsky,et al.  The superdense plasma sheet in the magnetosphere during high-speed-stream-driven storms: Plasma transport timescales , 2009 .

[187]  Gábor Tóth,et al.  Integration of the radiation belt environment model into the space weather modeling framework , 2009 .

[188]  Daniel N. Baker,et al.  Dynamic relationship between the outer radiation belt and the plasmapause during March–May 2001 , 2005 .

[189]  Z. V. Lewis On the apparent randomness of substorm onset , 1991 .

[190]  J. Borovsky Time‐Integral Correlations of Multiple Variables With the Relativistic‐Electron Flux at Geosynchronous Orbit: The Strong Roles of Substorm‐Injected Electrons and the Ion Plasma Sheet , 2017 .

[191]  E. Stassinopoulos,et al.  A general formula for the decay lifetimes of the Starfish electrons , 1971 .

[192]  E. Donovan,et al.  Tracking patchy pulsating aurora through all-sky images , 2017 .

[193]  R. Denton,et al.  Solar cycle variation of plasma mass density in the outer magnetosphere: Magnetoseismic analysis of toroidal standing Alfvén waves detected by Geotail , 2014 .

[194]  J. Borovsky Global sawtooth oscillations of the magnetosphere , 2004 .

[195]  J. H. P. Dawes,et al.  The emergence of a coherent structure for coherent structures: localized states in nonlinear systems , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[196]  J. Valdivia,et al.  Magnetic fluctuations in anisotropic space plasmas: The effect of the plasma environment , 2016 .

[197]  S. Christon,et al.  Distribution of O + ions in the plasma sheet and locations of substorm onsets , 2010 .

[198]  W. Emery,et al.  Variability and forcing of the East Australian Current , 2005 .

[199]  V. Angelopoulos,et al.  Solar cycle dependence of substorm occurrence and duration: Implications for onset , 2015 .

[200]  A. Sharma,et al.  An empirical model relating the auroral geomagnetic activity to the interplanetary magnetic field , 1993 .

[201]  Sidney W. Wang,et al.  Mesospheric Hydroxyl Response to Electron Precipitation From the Radiation Belts , 2011 .

[202]  V. M. Ghete,et al.  Evidence of b-jet quenching in PbPb collisions at √(s(NN))=2.76  TeV. , 2013, Physical review letters.

[203]  Juan Alejandro Valdivia,et al.  Spatiotemporal activity of magnetic storms , 1999 .

[204]  R. Roble,et al.  Magnetosphere‐ionosphere‐thermosphere coupling: Effect of neutral winds on energy transfer and field‐aligned current , 1995 .

[205]  Herman G. J. Smit,et al.  Tropical Atlantic convection as revealed by ozone and relative humidity measurements , 2007 .

[206]  Josef Koller,et al.  Dynamic Radiation Environment Assimilation Model: DREAM , 2012 .

[207]  Dimitris Vassiliadis,et al.  Systems theory for geospace plasma dynamics , 2006 .

[208]  Michael E. Brown,et al.  Introduction to Space Physics , 1995 .

[209]  B. Tinsley Influence of Solar Wind on the Global Electric Circuit, and Inferred Effects on Cloud Microphysics, Temperature, and Dynamics in the Troposphere , 2000 .

[210]  R. Elphic,et al.  The Earth's plasma sheet as a laboratory for flow turbulence in high-β MHD , 1997, Journal of Plasma Physics.

[211]  R. Horne,et al.  Survey of magnetosonic waves and proton ring distributions in the Earth's inner magnetosphere , 2008 .

[212]  S. Schwartz,et al.  Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF , 2006 .

[213]  J. Birn,et al.  Substorm ion injections: Geosynchronous observations and test particle orbits in three-dimensional dynamic MHD fields , 1997 .

[214]  D. V. Blagoveshchenskii Effect of geomagnetic storms (substorms) on the ionosphere: 1. A review , 2013, Geomagnetism and Aeronomy.

[215]  C. Goertz,et al.  Chaotic appearance of the AE index , 1991 .

[216]  J. Borovsky,et al.  Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind‐driven magnetosphere , 2014 .

[217]  B. Tinsley,et al.  Solar wind-atmospheric electricity-cloud microphysics connections to weather and climate , 2016 .

[218]  S. A. Billings,et al.  Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit , 2011 .

[219]  T. Fuller‐Rowell,et al.  Global Simulation of Magnetospheric Space Weather Effects of the Bastille Day Storm , 2001 .

[220]  M. Fujimoto,et al.  What Controls the Structure and Dynamics of Earth’s Magnetosphere? , 2015 .

[221]  J. Borovsky,et al.  Substorm occurrence rates, substorm recurrence times, and solar wind structure , 2017 .

[222]  A. Chan,et al.  Fully adiabatic changes in storm time relativistic electron fluxes , 1997 .

[223]  M. Freeman,et al.  A comparison of the probability distribution of observed substorm magnitude with that predicted by a minimal substorm model , 2007 .

[224]  X. Shao,et al.  Specification of multiple geomagnetic responses to variable solar wind and IMF input , 2008 .

[225]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .

[226]  Daniel N. Baker,et al.  A description of the solar wind-magnetosphere coupling based on nonlinear filters , 1995 .

[227]  M. Liemohn,et al.  Statistical analysis of storm-time near-Earth current systems , 2015 .

[228]  P. Anderson,et al.  Duskside auroral undulations observed by IMAGE and their possible association with large‐scale structures on the inner edge of the electron plasma sheet , 2005 .

[229]  R. Mccormick,et al.  Significance of lightning‐generated whistlers to inner radiation belt electron lifetimes , 2003 .

[230]  K. Nykyri,et al.  Plasma transport at the magnetospheric boundary due to reconnection in Kelvin‐Helmholtz vortices , 2001 .

[231]  R. Stenzel,et al.  Whistler waves in space and laboratory plasmas , 1999 .

[232]  C. Rodger,et al.  Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry , 2007 .

[233]  Yiqun Yu,et al.  A new ionospheric electron precipitation module coupled with RAM‐SCB within the geospace general circulation model , 2016 .

[234]  D. Southwood Plasma waves in the magnetosphere , 1978, Nature.

[235]  J. Borovsky,et al.  Multistep Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm , 2002 .

[236]  D. Hampton,et al.  Fine scale structures of pulsating auroras in the early recovery phase of substorm using ground‐based EMCCD camera , 2012 .

[237]  J. Lyon,et al.  RCM meets LFM: initial results of one-way coupling , 2004 .

[238]  Tracy K. P. Gregg,et al.  Volcanic eruptions on mid‐ocean ridges: New evidence from the superfast spreading East Pacific Rise, 17°–19°S , 2002 .

[239]  D. Boscher,et al.  Long term dynamic radiation belt model for low energy protons , 1998 .

[240]  D. Weimer,et al.  Improved Ionospheric Electrodynamic Models and Application to Calculating Joule Heating Rates , 2005 .

[241]  Isobel J. Simpson,et al.  Source origins, modeled profiles, and apportionments of halogenated hydrocarbons in the greater Pearl River Delta region, southern China , 2009 .

[242]  J. Vogt Alfvén wave coupling in the auroral current circuit , 2002 .

[243]  Eh. S. Kazimirovskij,et al.  The earth's ionosphere. , 1981 .

[244]  M. Aschwanden,et al.  25 Years of Self-organized Criticality: Space and Laboratory Plasmas , 2016 .

[245]  O. Røyrvik,et al.  Pulsating aurora: Local and global morphology , 1977 .

[246]  Z. Vörös The magnetosphere as a nonlinear system , 1994 .

[247]  G. K. Mukherjee,et al.  Motion of charged particles in the magnetosphere , 1981 .

[248]  Joseph E. Borovsky,et al.  The occurrence rate of magnetospheric‐substorm onsets: Random and periodic substorms , 1993 .

[249]  Chaosong Huang,et al.  Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events , 2009 .

[250]  Damien Chua,et al.  Scale‐free statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: Dynamic magnetosphere is an avalanching system , 2002 .

[251]  J. Borovsky,et al.  Differences between CME‐driven storms and CIR‐driven storms , 2006 .

[252]  W Lotko,et al.  Magnetosphere Sawtooth Oscillations Induced by Ionospheric Outflow , 2011, Science.

[253]  B. Tsurutani,et al.  Some basic concepts of wave‐particle interactions in collisionless plasmas , 1997 .

[254]  H. W. Kroehl,et al.  What is a geomagnetic storm , 1994 .

[255]  B. Anderson,et al.  Distribution of ULF energy (ƒ < 80 mHz) in the inner magnetosphere: A statistical analysis of AMPTE CCE magnetic field data , 1992 .

[256]  A. Sharma,et al.  Nonequilibrium Phenomena in the Magnetosphere: Phase Transition, Self-organized Criticality and Turbulence , 2005 .

[257]  Y. Feldstein,et al.  The auroral luminosity structure in the high-latitude upper atmosphere: Its dynamics and relationship to the large-scale structure of the Earth's magnetosphere , 1985 .

[258]  A. Farmer,et al.  The solar-terrestrial environment , 1996 .

[259]  J. Borovsky,et al.  Dominant role of the asymmetric ring current in producing the stormtime , 2001 .

[260]  Robert L. McPherron,et al.  Satellite studies of magnetospheric substorms on August 15, 1968: 2. Solar wind and outer magnetosphere , 1973 .

[261]  J. Šimůnek,et al.  Analysis of temperature versus density plots and their relation to the LLBL formation under southward and northward IMF orientations , 2015 .

[262]  Thomas R. Anderson,et al.  A dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea: Simulating the dimethylsulfide (DMS) summer paradox , 2008 .

[263]  Yuri Shprits,et al.  Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss , 2008 .

[264]  J. Borovsky,et al.  A statistical look at plasmaspheric drainage plumes , 2008 .

[265]  P. Newell,et al.  Auroral Precipitation Models and Space Weather , 2015 .

[266]  Thomas C. Peterson,et al.  A quantification of uncertainties in historical tropical tropospheric temperature trends from radiosondes , 2011 .

[267]  M. Hesse,et al.  The Diffusion Region in Collisionless Magnetic Reconnection , 1999 .

[268]  Reuben R. McDaniel,et al.  Uncertainty and Surprise in Complex Systems , 2005 .

[269]  N. Meredith,et al.  The unexpected origin of plasmaspheric hiss from discrete chorus emissions , 2008, Nature.

[270]  J. Borovsky,et al.  Time dependence of substorm recurrence: An information‐theoretic analysis , 1996 .

[271]  J. Chum,et al.  The Origin of Plasmaspheric Hiss , 2009, Science.

[272]  J. Borovsky Electrical conductivity channels in the atmosphere produced by relativistic-electron microbursts from the magnetosphere , 2017 .

[273]  C. Rodger,et al.  Comparison of modeled and observed effects of radiation belt electron precipitation on mesospheric hydroxyl and ozone , 2013 .