Biomimetic Spider Leg Joints: A Review from Biomechanical Research to Compliant Robotic Actuators

Due to their inherent compliance, soft actuated joints are becoming increasingly important for robotic applications, especially when human-robot-interactions are expected. Several of these flexible actuators are inspired by biological models. One perfect showpiece for biomimetic robots is the spider leg, because it combines lightweight design and graceful movements with powerful and dynamic actuation. Building on this motivation, the review article focuses on compliant robotic joints inspired by the function principle of the spider leg. The mechanism is introduced by an overview of existing biological and biomechanical research. Thereupon a classification of robots that are bio-inspired by spider joints is presented. Based on this, the biomimetic robot applications referring to the spider principle are identified and discussed.

[1]  Haoyong Yu,et al.  Design and control of a novel compliant differential shape memory alloy actuator , 2015 .

[2]  C. H. Ellis THE MECHANISM OF EXTENSION IN THE LEGS OF SPIDERS , 1944 .

[3]  Alexander Petrunkevitch,et al.  Contributions to Our Knowledge of the Anatomy and Relationships of Spiders. , 1909 .

[4]  Javad Taghia,et al.  Position Control of Soft-Robots with Rotary-Type Pneumatic Actuators , 2012, ROBOTIK.

[5]  Lena Zentner,et al.  Modelling and Application of the Hydraulic Spider Leg Mechanism , 2013 .

[6]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[7]  Michael Ruhland,et al.  Die Beinmuskulatur und ihre Innervation bei der VogelspinneDugesiella hentzi (Ch.) (Araneae, Aviculariidae) , 1978, Zoomorphologie.

[8]  R. Blickhan,et al.  Cupiennius salei: biomechanical properties of the tibia–metatarsus joint and its flexing muscles , 2010, Journal of Comparative Physiology B.

[9]  R. Blickhan,et al.  Hydraulic leg extension is not necessarily the main drive in large spiders , 2012, Journal of Experimental Biology.

[10]  Oleg Ivlev Soft fluidic actuators of rotary type for safe physical human-machine interaction , 2009, 2009 IEEE International Conference on Rehabilitation Robotics.

[11]  K. Hosoda,et al.  Stretch reflex improves rolling stability during hopping of a decerebrate biped system , 2015, Bioinspiration & biomimetics.

[12]  K. Prestwich,et al.  The constraints on maximal activity in spiders , 1988, Journal of Comparative Physiology B.

[13]  Qibing Pei,et al.  Dielectric Elastomers for Actuators and Artificial Muscles , 2012 .

[14]  Fei Li,et al.  Design and development of starfish-like robot: Soft bionic platform with multi-motion using SMA actuators , 2013, 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[15]  Jonas O. Wolff,et al.  Hunting Without a Web: How Lycosoid Spiders Subdue their Prey , 2015 .

[16]  J. Anderson,et al.  The fluid pressure pumps of spiders (Chelicerata, Araneae) , 1975, Zeitschrift für Morphologie der Tiere.

[17]  Lorenzo Molinari Tosatti,et al.  Safe Human-Robot Cooperation in an Industrial Environment , 2013 .

[18]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[19]  Arne Rost,et al.  The SLS-Generated Soft Robotic Hand - An Integrated Approach Using Additive Manufacturing and Reinforcement Learning , 2013, 2013 12th International Conference on Machine Learning and Applications.

[20]  Ernst-August Seyfarth,et al.  The hemolymph vascular system in Cupiennius salei (Araneae: Ctenidae) , 2013 .

[21]  Dirk Lefeber,et al.  Pneumatic artificial muscles: Actuators for robotics and automation , 2002 .

[22]  C Menon,et al.  Active articulation for future space applications inspired by the hydraulic system of spiders , 2006, Bioinspiration & biomimetics.

[23]  Oleg Ivlev,et al.  Safety and handling concept for assistive robotic devices with pneumatic rotary soft-actuators , 2011, 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[24]  Michael Karner,et al.  On Technomorphic Modelling and Classification of Biological Joints , 2000 .

[25]  R. S. Wilson Some comments on the hydrostatic system of spiders (Chelicerata, Araneae) , 2004, Zeitschrift für Morphologie der Tiere.

[26]  Daniel P. Ferris,et al.  A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition , 2009, Journal of NeuroEngineering and Rehabilitation.

[27]  Dirk Lefeber,et al.  Pleated pneumatic artificial muscles: compliant robotic actuators , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[28]  Ching-Ping Chou,et al.  Static and dynamic characteristics of McKibben pneumatic artificial muscles , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[29]  Daniela Rus,et al.  A Recipe for Soft Fluidic Elastomer Robots , 2015, Soft robotics.

[30]  Bertrand Tondu,et al.  Modelling of the McKibben artificial muscle: A review , 2012 .

[31]  Fumiya Iida,et al.  Soft Robotics: Challenges and Perspectives , 2011, FET.

[32]  Lena Zentner,et al.  On the Mechanical Compliance of Technical Systems , 2012 .

[33]  J. Shultz,et al.  Evolution of locomotion in arachnida: The hydraulic pressure pump of the giant whipscorpion, Mastigoproctus Giganteus (Uropygi) , 1991, Journal of morphology.

[34]  Werner Kraus,et al.  Musculoskeletal Robots and Wearable Devices on the Basis of Cable-driven Actuators , 2015 .

[35]  Alessandro Gasparetto,et al.  Kinematic study of the spider system in a biomimetic perspective , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Reinhard Blickhan,et al.  Der hydraulische Mechanismus des Spinnenbeines und seine Anwendung für technische Probleme , 1998 .

[37]  Oleg Ivlev,et al.  Precise position and trajectory control of pneumatic soft-actuators for assistance robots and motion therapy devices , 2009, 2009 IEEE International Conference on Rehabilitation Robotics.

[38]  R. B. Brown The musculature of Agelena naevia , 1939 .

[39]  R. Blickhan,et al.  Strains in the exoskeleton of spiders , 2004, Journal of Comparative Physiology A.

[40]  R. H. Brown,et al.  The Hydraulic Mechanism of the Spider Leg , 1959 .

[41]  J. P. Harding,et al.  Hydrostatic pressure and leg extension in arthropods, with special reference to arachnids , 1958 .

[42]  Florian Winter,et al.  Static modeling of antagonistic pneumatic actuator for robotic applications , 2015, 2015 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM).

[43]  R. Hornfeck,et al.  A Novel Bio-Inspired Fluidic Actuator for Robotic Applications , 2014 .

[44]  A. Sensenig,et al.  Mechanics of cuticular elastic energy storage in leg joints lacking extensor muscles in arachnids , 2003, Journal of Experimental Biology.

[45]  Stefan Schulz,et al.  Fluidically Driven Robots with Biologically Inspired Actuators , 2005, CLAWAR.

[46]  Nikolaos G. Tsagarakis,et al.  Improved modelling and assessment of pneumatic muscle actuators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[47]  Sung-Hoon Ahn,et al.  A shape memory alloy–based soft morphing actuator capable of pure twisting motion , 2015 .

[48]  Stefan Schulz,et al.  Compliant Robotics and Automation with Flexible Fluidic Actuators and Inflatable Structures , 2012 .

[49]  Martin Buss,et al.  Compliant actuation of rehabilitation robots , 2008, IEEE Robotics & Automation Magazine.

[50]  Alexander Verl,et al.  Generative Fertigung mit Kunststoffen , 2013 .

[51]  D. M. Stewart,et al.  Blood pressure in the tarantula,Dugesiella hentzi , 1974, Journal of comparative physiology.

[52]  Manfred Kohl,et al.  Fluidic microjoints based on spider legs , 1998 .

[53]  S. SCHULZ,et al.  A new ultralight anthropomorphic hand , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[54]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[55]  Dominiek Reynaerts,et al.  Pneumatic and hydraulic microactuators: a review , 2010 .

[56]  Juan Antonio,et al.  Safe human-robot interaction based on multi-sensor fusion and dexterous manipulation planning , 2011 .

[57]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[58]  Pierre Lopez,et al.  Modeling and control of McKibben artificial muscle robot actuators , 2000 .

[59]  Gabriella Eula,et al.  Soft Pneumatic Actuators for Rehabilitation , 2014 .

[60]  Claudio Rossi,et al.  Bio-inspired morphing caudal fin using shape memory alloy composites for a fish-like robot: Design, fabrication and analysis , 2015, 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO).

[61]  Suter,et al.  Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change , 1999, The Journal of experimental biology.

[62]  T I Tóth,et al.  A neuromechanical model explaining forward and backward stepping in the stick insect. , 2012, Journal of neurophysiology.

[63]  Georgios Andrikopoulos,et al.  A Survey on applications of Pneumatic Artificial Muscles , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[64]  Garrett C. Waycaster,et al.  Design of a powered above knee prosthesis using pneumatic artificial muscles , 2010 .

[65]  Christian Pylatiuk,et al.  Development of a miniaturised hydraulic actuation system for artificial hands , 2008 .

[66]  Elena Garcia,et al.  On the Technological Instantiation of a Biomimetic Leg Concept for Agile Quadrupedal Locomotion , 2015 .

[67]  Martin Mellado,et al.  Novel Additive Manufacturing Pneumatic Actuators and Mechanisms for Food Handling Grippers , 2014 .

[68]  P. Dario,et al.  Design concept and validation of a robotic arm inspired by the octopus , 2011 .

[69]  Alain Delchambre,et al.  Towards flexible medical instruments: Review of flexible fluidic actuators , 2009 .

[70]  C. Kropf Hydraulic System of Locomotion , 2013 .

[71]  C. Lira,et al.  Spider-inspired embedded actuator for space applications , .

[72]  U. Schubert,et al.  Shape memory polymers: Past, present and future developments , 2015 .

[73]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[74]  A. Kargov,et al.  Design of a flexible fluidic actuation system for a hybrid elbow orthosis , 2009, 2009 IEEE International Conference on Rehabilitation Robotics.

[75]  R. Foelix,et al.  The biology of spiders. , 1987 .

[76]  F. Barth,et al.  A Spider’s World: Senses and Behavior , 2001 .