Covariance and Fisher information in quantum mechanics

Variance and Fisher information are ingredients of the Cramer-Rao inequality. We regard Fisher information as a Riemannian metric on a quantum statistical manifold and choose monotonicity under coarse graining as the fundamental property of variance and Fisher information. In this approach we show that there is a kind of dual one-to-one correspondence between the candidates of the two concepts. We emphasize that Fisher information is obtained from relative entropies as contrast functions on the state space and argue that the scalar curvature might be interpreted as an uncertainty density on a statistical manifold.

[1]  O. Barndorff-Nielsen,et al.  Fisher information in quantum statistics , 1998, quant-ph/9808009.

[2]  P. Slater COMPARATIVE NONINFORMATIVITIES OF QUANTUM PRIORS BASED ON MONOTONE METRICS , 1997, quant-ph/9703012.

[3]  Dénes Petz,et al.  On the Riemannian metric of α-entropies of density matrices , 1996 .

[4]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[5]  E. Wigner,et al.  INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[6]  D. Petz,et al.  Non-Commutative Extension of Information Geometry II , 1997 .

[7]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[8]  R. Kass The Geometry of Asymptotic Inference , 1989 .

[9]  J. Dittmann On the Riemannian Geometry of Finite Dimensional Mixed States , 1993 .

[10]  N. Čencov Statistical Decision Rules and Optimal Inference , 2000 .

[11]  D. Petz,et al.  Geometries of quantum states , 1996 .

[12]  D. Petz Geometry of canonical correlation on the state space of a quantum system , 1994 .

[13]  Hiroshi Nagaoka,et al.  Quantum Fisher metric and estimation for pure state models , 1995 .

[14]  M. Grasselli,et al.  On the Uniqueness of the Chentsov Metric in Quantum Information Geometry , 2000, math-ph/0006030.

[15]  Peter E. Jupp,et al.  Yokes and symplectic structures , 1997 .

[16]  S. Eguchi Second Order Efficiency of Minimum Contrast Estimators in a Curved Exponential Family , 1983 .

[17]  Eugen Fick,et al.  The quantum statistics of dynamic processes , 1990 .

[18]  M. Ruskai,et al.  Monotone Riemannian metrics and relative entropy on noncommutative probability spaces , 1998, math-ph/9808016.

[19]  D. Petz,et al.  Extending the Fisher metric to density matrices , 2001 .

[20]  C. Helstrom Quantum detection and estimation theory , 1969 .

[21]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[22]  Classical and quantum info-manifolds , 2000, math-ph/0002050.

[23]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[24]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[25]  D. Petz Monotone metrics on matrix spaces , 1996 .

[26]  H. Hasegawa EXPONENTIAL AND MIXTURE FAMILIES IN QUANTUM STATISTICS : dual structure and unbiased parameter estimation(Analysis of Operators on Gaussian Space and Quantum Probability Theory) , 1995 .