In-plane impedance spectroscopy in aerosol deposited NiMn2O4 negative temperature coefficient thermistor films

Temperature dependent in-plane impedance spectroscopy measurements were carried out in order to analyze the charge transport properties of functional oxide NiMn2O4 negative temperature coefficient thermistor films deposited via aerosol deposition techniques onto glass and Al2O3 substrates. The in-plane resistivity (ρ) versus temperature (T) curves of all films were uniform over a large temperature range (180 K to 500 K) and showed the typical exponential power-law behavior associated with variable-range hopping. The ρ-T dependences of annealed and as-deposited films exhibited power-law exponents p of about 0.6 and thermistor constants B in the range of 3500 K to 5000 K. As-deposited films showed higher p values as compared to annealed films. As-deposited films exhibited also increased B values, leading to increased sensitivity of the resistance to temperature changes, whereas annealed films deposited on Al2O3 showed the lowest scatter in differentiated ρ-T data and might display superior reliability for t...

[1]  Antonio Feteira,et al.  Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective , 2009 .

[2]  A. Feltz,et al.  Thin layer NTC semiconductor ceramics based on NiMn2O4 and ZnzNiMn2−zO4 () , 1993 .

[3]  E. Morán,et al.  Nickel permanganate as a precursor in the synthesis of a NiMn2O4 spinel , 2005 .

[4]  Andreas Roosen,et al.  Screen printing of co-precipitated NiMn2O4+δ for production of NTCR thermistors , 2003 .

[5]  J. Töpfer,et al.  Microstructure and phase development in NiMn2O4 spinel ceramics during isothermal sintering , 1990 .

[6]  Rainer Schmidt,et al.  Production of NTCR thermistor devices based on NiMn2O4+δ , 2004 .

[7]  K. Park,et al.  Electrical properties of Ni–Mn–Co–(Fe) oxide thick-film NTC thermistors prepared by screen printing , 2003 .

[8]  D. G. Wickham,et al.  Solid-phase equilibria in the system NiOMn2O3O2 , 1964 .

[9]  F. Morrison,et al.  Impedance spectroscopy studies on polycrystalline BiFeO3 thin films on Pt/Si substrates , 2009 .

[10]  Woon-Ha Yoon,et al.  Highly Dense and Nanograined NiMn2O4 Negative Temperature coefficient Thermistor Thick Films Fabricated by Aerosol‐Deposition , 2009 .

[11]  Alexander L. Efros,et al.  Electronic Properties of Doped Semi-conductors , 1984 .

[12]  W. Chen,et al.  Frequency and temperature dependent impedance spectroscopy of cobalt ferrite composite thick films , 2010 .

[13]  Hiromi Tosaki,et al.  Thick-Film Thermistor and Its Applications , 1980 .

[14]  M. J. Lee,et al.  Chemical processing and characterization of spinel-type thermistor powder in the Mn-Ni-Fe oxide system , 1996, Journal of Materials Science.

[15]  G. L. Pearson,et al.  Properties and Uses of Thermistors--- Thermally Sensitive Resistors , 1946, Transactions of the American Institute of Electrical Engineers.

[16]  Impedance spectroscopy of epitaxial multiferroic thin films , 2007, 0704.3262.

[17]  Ming Li,et al.  Relaxor ferroelectric-like high effective permittivity in leaky dielectrics/oxide semiconductors induced by electrode effects: A case study of CuO ceramics , 2009 .

[18]  Chusheng Chen,et al.  Effects of Cu and Zn co-doping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics , 2008 .

[19]  G. Bailleul,et al.  The effect of manganese substitution to gallium on the physical properties of MgGa2−xMnxO4 spinel type ceramic thermistors , 2007 .

[20]  A. Brinkman,et al.  Effect of oxygen partial pressure on the NTCR characteristics of sputtered NixMn3−xO4+δ thin films , 2004 .

[21]  N. Renault,et al.  Distribution cationique et distorsion cristalline dans les manganites spinelles NiCrxMn2−xO4 , 1972 .

[22]  A. Brinkman,et al.  ac hopping admittance in spinel manganate negative temperature coefficient thermistor electroceramics , 2008 .

[23]  Carlos León,et al.  Structure and physical properties of nickel manganite NiMn2O4 obtained from nickel permanganate precursor , 2010 .

[24]  Abel Rousset,et al.  Thin films of nickel manganese oxide for NTC thermistor applications , 1993 .

[25]  P. K. Datta,et al.  Electron-hopping modes in NiMn 2 O 4+δ materials , 2005 .

[26]  Abel Rousset,et al.  Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors , 1998 .

[27]  P. B. Lin Ceramic materials research trends , 2007 .

[28]  Junhao Chu,et al.  Characterization of Mn1.56Co0.96Ni0.48O4 films for infrared detection , 2008 .

[29]  Elizabeth C. Dickey,et al.  Synthesis, Phase Characterization, and Properties of Chemical Solution‐Deposited Nickel Manganite Thermistor Thin Films , 2009 .

[30]  G. Bailleul,et al.  Manganese based spinel – like ceramics with NTC – type thermistor behaviour , 2007 .

[31]  Mauro Birattari,et al.  Experiments and Applications , 2009 .

[32]  Rainer Schmidt,et al.  Small polaron hopping in spinel manganates , 2005 .

[33]  Elizabeth C. Dickey,et al.  Spin Spray‐Deposited Nickel Manganite Thermistor Films For Microbolometer Applications , 2011 .

[34]  R. Arnott,et al.  Preparation, semiconduction and low-temperature magnetization of the system Ni1−xMn12+xO4 , 1962 .

[35]  R. Rojas,et al.  Preparation and characterization of spinel-type Mn–Ni–Co–O negative temperature coefficient ceramic thermistors , 1998 .

[36]  C. Hsu,et al.  Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance , 2001 .

[37]  Z. Klusek,et al.  An investigation into the surface topology and thickness profile of functional ceramic spinel manganate sputtered, evaporated and screen-printed layers , 2006 .

[38]  I. Reaney,et al.  Correlation between microstructure and conductance in NTC thermistors produced from oxide powders , 1999 .

[39]  S. Volkov,et al.  Technological modification of spinel-based CuxNi1–x–yCo2yMn2–yO4 ceramics , 2001 .

[40]  S. Baliga,et al.  Hopping conduction in sputtered Ni-Co-Mn-O spinel films , 1991 .

[41]  J. Chu,et al.  Variation in hopping conduction across the magnetic transition in spinel , 2010 .