Identification of a scatterer embedded in elastic heterogeneous media using dynamic XFEM

Abstract A numerical approach for identifying a scatterer embedded in elastic heterogeneous media is described. This scatterer may be a crack, a void, or an inclusion with properties that have detectable contrasts from those of the host medium. The forward (wave propagation) problem is solved using the dynamic extended finite element method (XFEM), which allows the boundary of the scatterer to be easily relocated over a stationary background mesh. The inverse problem is cast as a minimization problem whereby the unknown shape parameters of the scatterer—e.g., a line crack’s center coordinates, size, and orientation—are the updating parameters. A gradient-based method is utilized to solve the minimization problem. In order to alleviate the potential manifestation of multiple solutions to the inverse problem, various deployment patterns for multiple sensors are investigated, and also a divide-and-conquer approach is adopted, wherein a set of independent inversions using multiple initial guesses are carried out.

[1]  G. Manolis Elastic wave scattering around cavities in inhomogeneous continua by the BEM , 2003 .

[2]  Hubert Maigre,et al.  An explicit dynamics extended finite element method. Part 1: Mass lumping for arbitrary enrichment functions , 2009 .

[3]  Dan Givoli,et al.  XFEM‐based crack detection scheme using a genetic algorithm , 2007 .

[4]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[5]  J. Dundurs Discussion: ``Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading'' (Bogy, D. B., 1968, ASME J. Appl. Mech., 35, pp. 460-466) , 1969 .

[6]  Mark A Fleming,et al.  ENRICHED ELEMENT-FREE GALERKIN METHODS FOR CRACK TIP FIELDS , 1997 .

[7]  Jyoti K. Sinha,et al.  SIMPLIFIED MODELS FOR THE LOCATION OF CRACKS IN BEAM STRUCTURES USING MEASURED VIBRATION DATA , 2002 .

[8]  Grant P. Steven,et al.  VIBRATION-BASED MODEL-DEPENDENT DAMAGE (DELAMINATION) IDENTIFICATION AND HEALTH MONITORING FOR COMPOSITE STRUCTURES — A REVIEW , 2000 .

[9]  L. Kallivokas,et al.  NEAR-SURFACE LOCALIZATION AND SHAPE IDENTIFICATION OF A SCATTERER EMBEDDED IN A HALFPLANE USING SCALAR WAVES , 2009 .

[10]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[11]  Charles Hellier,et al.  Handbook of Nondestructive Evaluation , 2001 .

[12]  Soheil Mohammadi,et al.  Delamination analysis of composites by new orthotropic bimaterial extended finite element method , 2011 .

[13]  Dan Givoli,et al.  Crack identification by ‘arrival time’ using XFEM and a genetic algorithm , 2009 .

[14]  E. Taciroglu,et al.  Shape optimization of piezoelectric devices using an enriched meshfree method , 2009 .

[15]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[16]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[17]  J. Rice,et al.  Plane Problems of Cracks in Dissimilar Media , 1965 .

[18]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[19]  Bojan B. Guzina,et al.  Elastic-wave identification of penetrable obstacles using shape-material sensitivity framework , 2009, J. Comput. Phys..

[20]  J. Bielak,et al.  A symmetric Galerkin BEM variational framework for multi-domain interface problems , 2005 .

[21]  Haim Waisman,et al.  Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms , 2010 .

[22]  Ted Belytschko,et al.  Time dependent crack tip enrichment for dynamic crack propagation , 2010 .

[23]  Gui-rong Liu,et al.  Computational Inverse Techniques in Nondestructive Evaluation , 2003 .

[24]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[25]  W. E. Lawrie,et al.  Ultrasonic testing of materials: 2nd English Edition, translated from the 3rd German Edition, J. & H. Krautkrämer Springer-Verlag, Berlin, Heidelberg, New York (1977) 667 pp, $65.20, DM 148 , 1978 .

[26]  Zhigang Suo,et al.  Partition of unity enrichment for bimaterial interface cracks , 2004 .

[27]  J. Dundurs,et al.  Discussion of Edge-Bonded Dissimilar Orthogonal Elastic Wedges under Normal and Shear Loading , 1969 .

[28]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[29]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[30]  Haim Waisman,et al.  Experimental application and enhancement of the XFEM-GA algorithm for the detection of flaws in structures , 2011 .

[31]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[32]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[33]  M. Aliabadi,et al.  Boundary‐Element Method , 2009 .

[34]  Gui-Rong Liu,et al.  Flaw detection in sandwich plates based on time-harmonic response using genetic algorithm , 2001 .

[35]  D. Roy Mahapatra,et al.  Identification of delamination in composite beams using spectral estimation and a genetic algorithm , 2002 .

[36]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[37]  B. Guzina,et al.  Elastodynamic Green's functions for a smoothly heterogeneous half-space , 1996 .