E3 Ubiquitin Ligases in Endothelial Dysfunction and Vascular Diseases: Roles and Potential Therapies

Abstract: Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.

[1]  Zhengyan Liang,et al.  A Comprehensive Analysis Revealing FBXW9 as a Potential Prognostic and Immunological Biomarker in Breast Cancer , 2023, International journal of molecular sciences.

[2]  A. Leichtle,et al.  TRIM21 Expression as a Prognostic Biomarker for Progression-Free Survival in HNSCC , 2023, International journal of molecular sciences.

[3]  D. Kotton,et al.  Novel FOXF1-Stabilizing Compound TanFe Stimulates Lung Angiogenesis in Alveolar Capillary Dysplasia. , 2022, American journal of respiratory and critical care medicine.

[4]  U. Pendurthi,et al.  Gab2-MALT1 Axis Regulates Thromboinflammation and Deep Vein Thrombosis. , 2022, Blood.

[5]  D. Baptista,et al.  The E3 Ubiquitin Ligase Peli1 Deficiency Promotes Atherosclerosis Progression , 2022, Cells.

[6]  M. Fu,et al.  TRIM47 is a novel endothelial activation factor that aggravates lipopolysaccharide-induced acute lung injury in mice via K63-linked ubiquitination of TRAF2 , 2022, Signal Transduction and Targeted Therapy.

[7]  Ji Cao,et al.  MDM2-Mediated Ubiquitination of RXRβ Contributes to Mitochondrial Damage and Related Inflammation in Atherosclerosis , 2022, International journal of molecular sciences.

[8]  W. Fang,et al.  Liraglutide prevents high glucose induced HUVECs dysfunction via inhibition of PINK1/Parkin-dependent mitophagy , 2022, Molecular and Cellular Endocrinology.

[9]  N. Maulik,et al.  Gene therapy with Pellino-1 improves perfusion and decreases tissue loss in Flk-1 heterozygous mice but fails in MAPKAP Kinase-2 knockout murine hind limb ischemia model. , 2022, Microvascular research.

[10]  Jingxin Gao,et al.  E3 ubiquitin ligase mind bomb 1 overexpression reduces apoptosis and inflammation of cardiac microvascular endothelial cells in coronary microvascular dysfunction , 2021, Cellular Signalling.

[11]  Meizi Yang,et al.  Overexpression of E3 ubiquitin ligase Cbl attenuates endothelial dysfunction in diabetes mellitus by inhibiting the JAK2/STAT4 signaling and Runx3-mediated H3K4me3 , 2021, Journal of translational medicine.

[12]  Wei He,et al.  Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome , 2021, Acta Pharmaceutica Sinica B.

[13]  Dan Chen,et al.  E3 ubiquitin ligases: styles, structures and functions , 2021, Molecular Biomedicine.

[14]  S. Wattanapitayakul,et al.  Unripe Carica papaya Protects Methylglyoxal-Invoked Endothelial Cell Inflammation and Apoptosis via the Suppression of Oxidative Stress and Akt/MAPK/NF-κB Signals , 2021, Antioxidants.

[15]  Jihong Han,et al.  Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies , 2021, Pharmacological Reviews.

[16]  M. Rapé,et al.  An E3 ligase guide to the galaxy of small-molecule-induced protein degradation. , 2021, Cell chemical biology.

[17]  Yonghui Zhang,et al.  The E3 Ubiquitin Ligase RNF5 Facilitates SARS-CoV-2 Membrane Protein-Mediated Virion Release , 2021, bioRxiv.

[18]  Wei Jiang,et al.  E3 ligase Nedd4l promotes antiviral innate immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3 , 2021, Nature Communications.

[19]  D. Stewart,et al.  Endothelial cells in the pathogenesis of pulmonary arterial hypertension , 2021, European Respiratory Journal.

[20]  I. Gregoric,et al.  Endothelial Dysfunction and Its Clinical Implications , 2021, Angiology.

[21]  M. Goumans,et al.  Endothelial Dysfunction in Pulmonary Hypertension: Cause or Consequence? , 2021, Biomedicines.

[22]  E. Krüger,et al.  The Ubiquitin–Proteasome System in Immune Cells , 2021, Biomolecules.

[23]  T. Verano-Braga,et al.  ACE2 in the renin-angiotensin system. , 2020, Clinical science.

[24]  L. Claesson‐Welsh,et al.  Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. , 2020, Trends in molecular medicine.

[25]  P. Moreira,et al.  PINK1/PARKIN signalling in neurodegeneration and neuroinflammation , 2020, Acta neuropathologica communications.

[26]  A. Ciulli,et al.  E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones , 2020, SLAS discovery : advancing life sciences R & D.

[27]  S. Orfanos,et al.  Endothelial Damage in Acute Respiratory Distress Syndrome , 2020, International journal of molecular sciences.

[28]  A. Zorzano,et al.  The dialogue between the ubiquitin-proteasome system and autophagy: Implications in ageing , 2020, Ageing Research Reviews.

[29]  F. Zhang,et al.  Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms , 2020, Pharmacological Research.

[30]  R. Kishore,et al.  Potential role of hydrogen sulfide in diabetes-impaired angiogenesis and ischemic tissue repair , 2020, Redox biology.

[31]  Liu Cao,et al.  E3 Ubiquitin ligase NEDD4 family‑regulatory network in cardiovascular disease , 2020, International journal of biological sciences.

[32]  P. Thistlethwaite,et al.  MDM2-Mediated Ubiquitination of Angiotensin-Converting Enzyme 2 Contributes to the Development of Pulmonary Arterial Hypertension , 2020, Circulation.

[33]  J. Garcia,et al.  Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction , 2020, Redox biology.

[34]  Lin Li,et al.  Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. , 2020, Pharmacological research.

[35]  Xiao-Jing Shi,et al.  Skp2 in the ubiquitin-proteasome system: A comprehensive review. , 2020, Medicinal research reviews.

[36]  G. Hummer,et al.  Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex , 2020, Science.

[37]  D. Su,et al.  HRD1 prevents atherosclerosis-mediated endothelial cell apoptosis by promoting LOX-1 degradation , 2020, Cell cycle.

[38]  Yingxian Sun,et al.  The E3 ubiquitin ligase Smurf2 regulates PARP1 stability to alleviate oxidative stress‐induced injury in human umbilical vein endothelial cells , 2020, Journal of cellular and molecular medicine.

[39]  Zhi-wei Wang,et al.  NEDD4 E3 ligase: Functions and mechanism in human cancer. , 2020, Seminars in cancer biology.

[40]  Zhi-Sheng Jiang,et al.  The Role of Ubiquitin E3 Ligase in Atherosclerosis. , 2020, Current medicinal chemistry.

[41]  Fan Li,et al.  APC/Cdh1 targets PECAM‐1 for ubiquitination and degradation in endothelial cells , 2020, Journal of cellular physiology.

[42]  C. Ince,et al.  Endothelial Responses in Sepsis. , 2020, American journal of respiratory and critical care medicine.

[43]  G. Hansmann,et al.  Activation of The Metabolic Master Regulator PPARγ - A Potential PIOneering Therapy for Pulmonary Arterial Hypertension. , 2020, American journal of respiratory cell and molecular biology.

[44]  É. Azoulay,et al.  Immune Consequences of Endothelial Cells' Activation and Dysfunction During Sepsis. , 2020, Critical care clinics.

[45]  Yingxian Sun,et al.  Role of WW domain E3 ubiquitin protein ligase 2 in modulating ubiquitination and Degradation of Septin4 in oxidative stress endothelial injury , 2020, Redox biology.

[46]  Zhongcai Fan,et al.  Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascular Complications under Diabetes , 2019, Oxidative medicine and cellular longevity.

[47]  Lu Lu,et al.  Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. , 2019, European journal of pharmacology.

[48]  Xionglei He,et al.  A hMTR4‐PDIA3P1‐miR‐125/124‐TRAF6 Regulatory Axis and Its Function in NF kappa B Signaling and Chemoresistance , 2019, Hepatology.

[49]  Mohd Hassan Baig,et al.  ASK1 and its role in cardiovascular and other disorders: available treatments and future prospects , 2019, Expert review of proteomics.

[50]  R. Franke,et al.  Vascular Endothelial Cell Biology: An Update , 2019, International journal of molecular sciences.

[51]  Bao Hou,et al.  Protective Effects and Mechanisms of Vaccarin on Vascular Endothelial Dysfunction in Diabetic Angiopathy , 2019, International journal of molecular sciences.

[52]  P. Hordijk,et al.  Ubiquitin-based modifications in endothelial cell–cell contact and inflammation , 2019, Journal of Cell Science.

[53]  S. Gräf,et al.  Molecular genetic framework underlying pulmonary arterial hypertension , 2019, Nature Reviews Cardiology.

[54]  M. Fu,et al.  TRIM65 E3 ligase targets VCAM-1 degradation to limit LPS-induced lung inflammation , 2019, Journal of molecular cell biology.

[55]  Z. Ni,et al.  PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation , 2019, Redox biology.

[56]  W. Langdon,et al.  Regulation of immune responses by E3 ubiquitin ligase Cbl-b. , 2019, Cellular immunology.

[57]  C. Meyer-Schwesinger The ubiquitin–proteasome system in kidney physiology and disease , 2019, Nature Reviews Nephrology.

[58]  Danhui Ma,et al.  The PROTAC technology in drug development , 2019, Cell biochemistry and function.

[59]  K. Cimprich,et al.  PPARγ Interaction with UBR5/ATMIN Promotes DNA Repair to Maintain Endothelial Homeostasis. , 2019, Cell reports.

[60]  A. Aerts,et al.  Pathological effects of ionizing radiation: endothelial activation and dysfunction , 2018, Cellular and Molecular Life Sciences.

[61]  Liang Chen,et al.  Relationship between the endothelial glycocalyx and the extent of coronary atherosclerosis , 2018, Microcirculation.

[62]  Zhanjun Jia,et al.  Parkin Modulates ERRα/eNOS Signaling Pathway in Endothelial Cells , 2018, Cellular Physiology and Biochemistry.

[63]  You-yang Zhao,et al.  Endothelial and Smooth Muscle Cell Interaction via FoxM1 Signaling Mediates Vascular Remodeling and Pulmonary Hypertension , 2018, American journal of respiratory and critical care medicine.

[64]  D. Mcfadden,et al.  Disruption of VEGF Mediated Flk‐1 Signaling Leads to a Gradual Loss of Vessel Health and Cardiac Function During Myocardial Infarction: Potential Therapy With Pellino‐1 , 2018, Journal of the American Heart Association.

[65]  Tao Wang,et al.  TRAF6 mediates high glucose‐induced endothelial dysfunction , 2018, Experimental cell research.

[66]  M. Kaur,et al.  Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies , 2018, Cardiovascular Diabetology.

[67]  C. Patterson,et al.  Emerging Roles of Vascular Endothelium in Metabolic Homeostasis. , 2018, Circulation research.

[68]  X. Tu,et al.  Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy , 2018, Acta Pharmacologica Sinica.

[69]  G. Hu,et al.  YAP Controls Endothelial Activation and Vascular Inflammation Through TRAF6 , 2018, Circulation research.

[70]  A. Orekhov,et al.  Potential of anti-inflammatory agents for treatment of atherosclerosis. , 2018, Experimental and molecular pathology.

[71]  D. Geerts,et al.  The Cullin-3–Rbx1–KCTD10 complex controls endothelial barrier function via K63 ubiquitination of RhoB , 2018, The Journal of cell biology.

[72]  N. Alenina,et al.  The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7) , 2017, Physiological reviews.

[73]  Jing Zhao,et al.  The role of ubiquitination and deubiquitination in the regulation of cell junctions , 2017, Protein & Cell.

[74]  B. Zhang,et al.  Biomimetic nanoparticles for inflammation targeting , 2017, Acta pharmaceutica Sinica. B.

[75]  S. Baek,et al.  Trim13 Potentiates Toll-Like Receptor 2–Mediated Nuclear Factor κB Activation via K29-Linked Polyubiquitination of Tumor Necrosis Factor Receptor-Associated Factor 6 , 2017, Molecular Pharmacology.

[76]  E. Letsiou,et al.  Parkin regulates lipopolysaccharide‐induced proinflammatory responses in acute lung injury , 2017, Translational research : the journal of laboratory and clinical medicine.

[77]  A. Malik,et al.  Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. , 2017, Circulation research.

[78]  C. M. Cadwell,et al.  p120-catenin regulates VE-cadherin endocytosis and degradation induced by the Kaposi sarcoma–associated ubiquitin ligase K5 , 2017, Molecular biology of the cell.

[79]  M. Murthy,et al.  WNK signalling pathways in blood pressure regulation , 2016, Cellular and Molecular Life Sciences.

[80]  In-kyu Lee,et al.  The endothelial E3 ligase HECW2 promotes endothelial cell junctions by increasing AMOTL1 protein stability via K63-linked ubiquitination. , 2016, Cellular signalling.

[81]  L. Treps,et al.  The E3 ubiquitin ligase MARCH3 controls the endothelial barrier , 2016, FEBS letters.

[82]  M. Balda,et al.  Tight junctions: from simple barriers to multifunctional molecular gates , 2016, Nature Reviews Molecular Cell Biology.

[83]  L. Kong,et al.  Protective effect of trans-δ-viniferin against high glucose-induced oxidative stress in human umbilical vein endothelial cells through the SIRT1 pathway , 2016, Free radical research.

[84]  N. Figg,et al.  Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia , 2015, EMBO molecular medicine.

[85]  Hao Xu,et al.  PINK1-Parkin-Mediated Mitophagy Protects Mitochondrial Integrity and Prevents Metabolic Stress-Induced Endothelial Injury , 2015, PloS one.

[86]  M. J. You,et al.  MALT1 is required for EGFR induced NF-κB activation and contributes to EGFR-driven lung cancer progression , 2015, Oncogene.

[87]  Gautam Sethi,et al.  The Vascular Endothelium and Human Diseases , 2013, International journal of biological sciences.

[88]  C. Stehouwer,et al.  Endothelial dysfunction in (pre)diabetes: Characteristics, causative mechanisms and pathogenic role in type 2 diabetes , 2013, Reviews in Endocrine and Metabolic Disorders.

[89]  D. Alessi,et al.  The CUL3–KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction , 2013, The Biochemical journal.

[90]  R. Schmidt,et al.  Genetics of age-related white matter lesions from linkage to genome wide association studies , 2012, Journal of the Neurological Sciences.

[91]  Jai Radhakrishnan,et al.  Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities , 2012, Nature.

[92]  A. Weissman,et al.  RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis , 2011, Nature Reviews Cancer.

[93]  U. Tepass,et al.  Adherens junctions: from molecules to morphogenesis , 2010, Nature Reviews Molecular Cell Biology.

[94]  P. Rose,et al.  Remodeling of Endothelial Adherens Junctions by Kaposi's Sarcoma-Associated Herpesvirus , 2008, Journal of Virology.

[95]  A. Shah,et al.  Reactive oxygen species and endothelial activation. , 2008, Antioxidants & redox signaling.

[96]  G. Lip,et al.  Oxidative stress and hypertension , 2006, International journal of clinical practice.

[97]  L. Holmgren,et al.  Angiomotin Regulates Endothelial Cell-Cell Junctions and Cell Motility* , 2005, Journal of Biological Chemistry.

[98]  David A. Schultz,et al.  A mechanosensory complex that mediates the endothelial cell response to fluid shear stress , 2005, Nature.

[99]  R. Budhiraja,et al.  Endothelial Dysfunction in Pulmonary Hypertension , 2004, Circulation.

[100]  M. Crackower,et al.  The role of ACE2 in cardiovascular physiology. , 2003, Trends in cardiovascular medicine.

[101]  R. Bucala,et al.  Advanced glycation end products and endothelial dysfunction in type 2 diabetes. , 2002, Diabetes care.

[102]  Paul L Huang,et al.  Accelerated Atherosclerosis, Aortic Aneurysm Formation, and Ischemic Heart Disease in Apolipoprotein E/Endothelial Nitric Oxide Synthase Double-Knockout Mice , 2001, Circulation.

[103]  R. Busse,et al.  Endothelial dysfunction in atherosclerosis. , 1996, Journal of vascular research.

[104]  Yutong Zhao,et al.  TRIM21 Mitigates Human Lung Microvascular Endothelial Cells ’ In fl ammatory Responses to LPS , 2019 .

[105]  R. Touyz,et al.  Oxidative Stress, Inflammation, and Vascular Aging in Hypertension , 2017, Hypertension.

[106]  P. Libby,et al.  Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis , 2016 .