A LONE code for the sparse control of quantum systems

In many applications with quantum spin systems, control functions with a sparse and pulse-shaped structure are often required. These controls can be obtained by solving quantum optimal control problems with L1-penalized cost functionals. In this paper, the MATLAB package LONE is presented aimed to solving L1-penalized optimal control problems governed by unitary-operator quantum spin models. This package implements a new strategy that includes a globalized semi-smooth Krylov–Newton scheme and a continuation procedure. Results of numerical experiments demonstrate the ability of the LONE code in computing accurate sparse optimal control solutions.

[1]  Alfio Borzì,et al.  Computational Optimization of Systems Governed by Partial Differential Equations , 2012, Computational science and engineering.

[2]  Alfio Borzì,et al.  SKRYN: A fast semismooth-Krylov-Newton method for controlling Ising spin systems , 2015, Comput. Phys. Commun..

[3]  Christiane P. Koch,et al.  Optimal control theory for a unitary operation under dissipative evolution , 2013, 1312.0111.

[4]  Luigi Grippo,et al.  Metodi di ottimizzazione non vincolata , 2011 .

[5]  Ivan I. Maximov,et al.  A smoothing monotonic convergent optimal control algorithm for nuclear magnetic resonance pulse sequence design. , 2010, The Journal of chemical physics.

[6]  Alfio Borzì,et al.  Newton Methods for the Optimal Control of Closed Quantum Spin Systems , 2015, SIAM J. Sci. Comput..

[7]  Roland Herzog,et al.  Directional Sparsity in Optimal Control of Partial Differential Equations , 2012, SIAM J. Control. Optim..

[8]  David J. Tannor,et al.  Control of Photochemical Branching: Novel Procedures for Finding Optimal Pulses and Global Upper Bounds , 1992 .

[9]  David J. Tannor,et al.  Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods , 2011 .

[10]  Yvon Maday,et al.  Monotonic Parareal Control for Quantum Systems , 2007, SIAM J. Numer. Anal..

[11]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[12]  Giorgio Fagiolo,et al.  Enhanced network reconstruction from irreducible local information , 2013, ArXiv.

[13]  Herschel Rabitz,et al.  A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .

[14]  Gerd Wachsmuth,et al.  Convergence and regularization results for optimal control problems with sparsity functional , 2011 .

[15]  H. Maurer,et al.  On L1‐minimization in optimal control and applications to robotics , 2006 .

[16]  J. Jahn Introduction to the Theory of Nonlinear Optimization , 1994 .

[17]  Malcolm H. Levitt,et al.  Symmetrical composite pulse sequences for NMR population inversion. I. Compensation of radiofrequency field inhomogeneity , 1982 .

[18]  Yvon Maday,et al.  Monotonic time-discretized schemes in quantum control , 2006, Numerische Mathematik.

[19]  Georg Stadler,et al.  Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..

[20]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Stefan Volkwein,et al.  A Globalized Newton Method for the Accurate Solution of a Dipole Quantum Control Problem , 2009, SIAM J. Sci. Comput..

[22]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[23]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[24]  N. Khaneja,et al.  Broadband relaxation-optimized polarization transfer in magnetic resonance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Kazufumi Ito,et al.  Semi-smooth Newton methods for state-constrained optimal control problems , 2003, Syst. Control. Lett..

[26]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[27]  Alfio Borzì,et al.  A method for solving exact-controllability problems governed by closed quantum spin systems , 2015, Int. J. Control.

[28]  H. Rabitz,et al.  D-MORPH regression: application to modeling with unknown parameters more than observation data , 2010 .

[29]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[30]  Herschel Rabitz,et al.  Accelerated monotonic convergence of optimal control over quantum dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Roland Herzog,et al.  Optimality Conditions and Error Analysis of Semilinear Elliptic Control Problems with L1 Cost Functional , 2012, SIAM J. Optim..

[32]  N. Khaneja,et al.  Optimal control for generating quantum gates in open dissipative systems , 2006, quant-ph/0609037.

[33]  Stefan Volkwein,et al.  Formulation and numerical solution of finite-level quantum optimal control problems , 2008 .

[34]  L. Qi,et al.  A Survey of Some Nonsmooth Equations and Smoothing Newton Methods , 1999 .

[35]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[36]  Francisco Facchinei,et al.  A semismooth equation approach to the solution of nonlinear complementarity problems , 1996, Math. Program..

[37]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.