A semi-empirical, electrochemistry-based model for Li-ion battery performance prediction over lifetime

[1]  E. Cuervo-Reyes,et al.  One law to rule them all: Stretched exponential master curve of capacity fade for Li-ion batteries , 2019, Journal of The Electrochemical Society.

[2]  José L. Bernal-Agustín,et al.  A computationally efficient Li-ion electrochemical battery model for long-term analysis of stand-alone renewable energy systems , 2018 .

[3]  Michael Pecht,et al.  A parameter estimation method for a simplified electrochemical model for Li-ion batteries , 2018, Electrochimica Acta.

[4]  M. Fowler,et al.  Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV , 2018 .

[5]  A. G. Anastasiadis,et al.  Economic impact of V2G technology in a smart microgrid , 2018 .

[6]  Mattia Ricco,et al.  Overview of Lithium-Ion battery modeling methods for state-of-charge estimation in electrical vehicles , 2018 .

[7]  J. Cabana,et al.  Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries , 2018 .

[8]  Martin Knipper,et al.  Hysteresis and current dependence of the graphite anode color in a lithium-ion cell and analysis of lithium plating at the cell edge , 2018 .

[9]  Sina Ober-Blöbaum,et al.  Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling , 2017, ArXiv.

[10]  Azah Mohamed,et al.  A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations , 2017 .

[11]  Marshall C. Smart,et al.  Factors Limiting Li + Charge Transfer Kinetics in Li-Ion Batteries , 2017 .

[12]  Yang Zhang,et al.  Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation☆ , 2017 .

[13]  Josep M. Guerrero,et al.  Optimal sizing of a lithium battery energy storage system for grid-connected photovoltaic systems , 2017, 2017 IEEE Second International Conference on DC Microgrids (ICDCM).

[14]  J. Jorné,et al.  Pulse Polarization for Li-Ion Battery under Constant State-of-Charge: Part II. Modeling of Individual Voltage Losses and SOC Prediction , 2017 .

[15]  Ibrahim Dincer,et al.  Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery , 2017 .

[16]  Blake Lundstrom,et al.  Life prediction model for grid-connected Li-ion battery energy storage system , 2017, 2017 American Control Conference (ACC).

[17]  Yan Wang,et al.  Repurposing Used Electric Car Batteries: A Review of Options , 2017 .

[18]  Kyri Baker,et al.  Modeling stationary lithium-ion batteries for optimization and predictive control , 2017, 2017 IEEE Power and Energy Conference at Illinois (PECI).

[19]  Marca M. Doeff,et al.  A review of Ni-based layered oxides for rechargeable Li-ion batteries , 2017 .

[20]  James A. Gilbert,et al.  Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells , 2017 .

[21]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[22]  Remus Teodorescu,et al.  Operation of a Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation: A Battery Lifetime Perspective , 2017, IEEE Transactions on Industry Applications.

[23]  Jonghoon Kim,et al.  Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries , 2016 .

[24]  W. Bessler,et al.  Asymmetry of Discharge/Charge Curves of Lithium-Ion Battery Intercalation Electrodes , 2016 .

[25]  Gerbrand Ceder,et al.  Understanding the Effect of Cation Disorder on the Voltage Profile of Lithium Transition-Metal Oxides , 2016 .

[26]  M. Winter,et al.  Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi1/3Co1/3Mn1/3O2 (NCM) Cathode , 2016 .

[27]  Jiangyu Li,et al.  The coupled lithium ion diffusion and stress in battery electrodes , 2015 .

[28]  Andrew McGordon,et al.  A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells , 2015 .

[29]  K. Amine,et al.  Kinetics Tuning of Li-Ion Diffusion in Layered Li(NixMnyCoz)O2. , 2015, Journal of the American Chemical Society.

[30]  Le Yi Wang,et al.  Butler–Volmer-Equation-Based Electrical Model for High-Power Lithium Titanate Batteries Used in Electric Vehicles , 2015, IEEE Transactions on Industrial Electronics.

[31]  Peter Gründler,et al.  In-situ Thermoelectrochemistry: Working with Heated Electrodes , 2015 .

[32]  Helmut Ehrenberg,et al.  Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches , 2015 .

[33]  Steven B. Young,et al.  A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems , 2015, The International Journal of Life Cycle Assessment.

[34]  Dirk Uwe Sauer,et al.  A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries , 2014 .

[35]  Mariesa L. Crow,et al.  Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications , 2014, Proceedings of the IEEE.

[36]  D. Sauer,et al.  Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries , 2014 .

[37]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[38]  Matthew Daigle,et al.  Electrochemistry-based Battery Modeling for Prognostics , 2013 .

[39]  Dirk Uwe Sauer,et al.  Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application , 2013 .

[40]  Xiaosong Hu,et al.  A comparative study of equivalent circuit models for Li-ion batteries , 2012 .

[41]  Shuhui Li,et al.  Study of battery modeling using mathematical and circuit oriented approaches , 2011, 2011 IEEE Power and Energy Society General Meeting.

[42]  Richard D. Braatz,et al.  Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective , 2010 .

[43]  Jun Liu,et al.  Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management , 2010 .

[44]  S. Pyun,et al.  The Fundamentals and Advances of Solid‐State Electrochemistry: Intercalation (Insertion) and Deintercalation (Extraction) in Solid‐State Electrodes , 2009 .

[45]  Olivier Tremblay,et al.  Experimental validation of a battery dynamic model for EV applications , 2009 .

[46]  Shin Fujitani,et al.  Study of LiFePO4 by Cyclic Voltammetry , 2007 .

[47]  Xiao‐Qing Yang,et al.  A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD , 2006 .

[48]  Richard T. Haasch,et al.  Diagnosis of power fade mechanisms in high-power lithium-ion cells☆ , 2003 .

[49]  D. Aurbach,et al.  The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling , 1997 .

[50]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[51]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[52]  C. M. Shepherd Design of Primary and Secondary Cells II . An Equation Describing Battery Discharge , 1965 .