Piezoelectric structural acoustic problems: Symmetric variational formulations and finite element results

This paper presents an original symmetric finite element formulation for piezoelectric structural acoustic coupled problems. First, an unsymmetric variational formulation in terms of structure displacement, electric potential and fluid pressure field is proposed. Then, through the introduction of an additional variable, namely fluid displacement potential, a symmetric finite element formulation is presented. Finally, after a rigorous condensation procedure and using the fluid added mass and piezoelectric added stiffness concepts, a reduced symmetric formulation is obtained. Some numerical examples concerning axisymmetric elastic/piezoelectric structures filled with internal compressible fluid are presented in order to validate the proposed formulation.

[1]  Dimitris A. Saravanos,et al.  STEADY-STATE RESPONSE OF ACOUSTIC CAVITIES BOUNDED BY PIEZOELECTRIC COMPOSITE SHELL STRUCTURES , 1997 .

[2]  Ulrich Gabbert,et al.  Finite Element Simulation of Smart Lightweight Structures for Active Vibration and Interior Acoustic Control , 2003 .

[3]  Roger Ohayon,et al.  Dissipative Interface Modeling for Vibroacoustic Problems - A New Symmetric Formulation , 2006 .

[4]  Alfredo Bermúdez,et al.  Finite element computation of the vibration modes of a fluid—solid system , 1994 .

[5]  Nils-Erik Hörlin,et al.  A 3-D HIERARCHICAL FE FORMULATION OF BIOT'S EQUATIONS FOR ELASTO-ACOUSTIC MODELLING OF POROUS MEDIA , 2001 .

[6]  Amr M. Baz,et al.  Control of sound radiation from a plate into an acoustic cavity using active constrained layer damping , 1999 .

[7]  Raymond Panneton,et al.  An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics , 1997 .

[8]  Amr M. Baz,et al.  Control of sound radiation from a plate into an acoustic cavity using active piezoelectric-damping composites , 1998 .

[9]  H. Tzou Piezoelectric Shells: Distributed Sensing and Control of Continua , 1993 .

[10]  Roger Ohayon,et al.  A new finite element formulation for internal acoustic problems with dissipative walls , 2006 .

[11]  Jean-François Deü,et al.  Free-vibration analysis of laminated plates with embedded shear-mode piezoceramic layers , 2005 .

[12]  A. C. Galucio,et al.  A Fractional Derivative Viscoelastic Model for Hybrid Active-Passive Damping Treatments in Time Domain - Application to Sandwich Beams , 2005 .

[13]  Alfredo Bermúdez,et al.  Modelling and numerical solution of elastoacoustic vibrations with interface damping , 1999 .

[14]  Jaehwan Kim,et al.  Optimal design of a piezoelectric smart structure for noise control , 1998 .

[15]  Göran Sandberg,et al.  A reduction method for structure-acoustic and poroelastic-acoustic problems using interface-dependent Lanczos vectors , 2006 .

[16]  R. Ohayon,et al.  Fluid-Structure Interaction: Applied Numerical Methods , 1995 .

[17]  Vijay K. Varadan,et al.  Finite element/boundary element simulation of interior noise control using active-passive control technique , 2000, Smart Structures.

[18]  Carlos A. Mota Soares,et al.  Computational mechanics : solids, structures and coupled problems , 2006 .

[19]  Roger Ohayon,et al.  Vibration of axisymmetric composite piezoelectric shells coupled with internal fluid , 2007 .

[20]  J. Allard Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials , 1994 .