Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.

Electron transport layer (ETL), facilitating charge carrier separation and electron extraction, is a key component in planar perovskite solar cells (PSCs). We developed an effective ETL using low-temperature solution-processed Nb-doped SnO2 (Nb:SnO2). Compared to the pristine SnO2, the power conversion efficiency of PSCs based on Nb:SnO2 ETL is raised to 17.57% from 15.13%. The splendid performance is attributed to the excellent optical and electronic properties of the Nb:SnO2 material, such as smooth surface, high electron mobility, appropriate electrical conductivity, therefore making a better growth platform for a high quality perovskite absorber layer. Experimental analyses reveal that the Nb:SnO2 ETL significantly enhances the electron extraction and effectively suppresses charge recombination, leading to improved solar cell performance.

[1]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[2]  A. Jen,et al.  Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron‐Transporting Layer , 2016, Advanced materials.

[3]  Priti Tiwana,et al.  Electron mobility and injection dynamics in mesoporous ZnO, SnO₂, and TiO₂ films used in dye-sensitized solar cells. , 2011, ACS nano.

[4]  Wenguang Li,et al.  Improving the Extraction of Photogenerated Electrons with SnO2 Nanocolloids for Efficient Planar Perovskite Solar Cells , 2015 .

[5]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[6]  Ruixia Yang,et al.  Hysteresis‐Suppressed High‐Efficiency Flexible Perovskite Solar Cells Using Solid‐State Ionic‐Liquids for Effective Electron Transport , 2016, Advanced materials.

[7]  Albert Rose,et al.  Double Extraction of Uniformly Generated Electron‐Hole Pairs from Insulators with Noninjecting Contacts , 1971 .

[8]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[9]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[10]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[11]  H. Grande,et al.  Electron Transport Layer-Free Solar Cells Based on Perovskite-Fullerene Blend Films with Enhanced Performance and Stability. , 2016, ChemSusChem.

[12]  H. Tao,et al.  Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells , 2015, Nature Communications.

[13]  F. Fabregat‐Santiago,et al.  Electronic conductivity in nanostructured TiO2 films permeated with electrolyte , 2003 .

[14]  G. Fang,et al.  Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells , 2015 .

[15]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[16]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[17]  E. Alarousu,et al.  Fast Crystallization and Improved Stability of Perovskite Solar Cells with Zn2SnO4 Electron Transporting Layer: Interface Matters. , 2015, ACS applied materials & interfaces.

[18]  Wei Xu,et al.  Solution‐Grown Monocrystalline Hybrid Perovskite Films for Hole‐Transporter‐Free Solar Cells , 2016, Advanced materials.

[19]  X. Ren,et al.  Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. , 2016, Nanoscale.

[20]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[21]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[22]  Kai Zhu,et al.  Controlled Humidity Study on the Formation of Higher Efficiency Formamidinium Lead Triiodide-Based Solar Cells , 2015 .

[23]  X. Ren,et al.  Thinness‐ and Shape‐Controlled Growth for Ultrathin Single‐Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices , 2016, Advanced materials.

[24]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[25]  Alex K.-Y. Jen,et al.  Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells , 2015 .

[26]  Min Ho Lee,et al.  Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells , 2015 .

[27]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[28]  X. Ren,et al.  20‐mm‐Large Single‐Crystalline Formamidinium‐Perovskite Wafer for Mass Production of Integrated Photodetectors , 2016 .

[29]  X. Ren,et al.  Two‐Inch‐Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization , 2015, Advanced materials.

[30]  Jinghui Zeng,et al.  Color-Tuned Perovskite Films Prepared for Efficient Solar Cell Applications , 2016 .

[31]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[32]  E. Alarousu,et al.  Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells , 2014 .

[33]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[34]  Yanhong Luo,et al.  Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells , 2015 .

[35]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[36]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[37]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[38]  Dong Yang,et al.  High efficiency flexible perovskite solar cells using superior low temperature TiO2 , 2015 .

[39]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[40]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[41]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[42]  Ruixia Yang,et al.  Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells , 2016 .

[43]  M. Kanatzidis,et al.  Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells , 2016 .

[44]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[45]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[46]  Yuliang Zhang,et al.  Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition , 2015 .

[47]  Wen-Hau Zhang,et al.  An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells , 2015 .

[48]  Kai Zhu,et al.  Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15% , 2015, Advanced materials.

[49]  Jae Woong Jung,et al.  A Low‐Temperature, Solution‐Processable, Cu‐Doped Nickel Oxide Hole‐Transporting Layer via the Combustion Method for High‐Performance Thin‐Film Perovskite Solar Cells , 2015, Advanced materials.

[50]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[51]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[52]  X. Ren,et al.  Effective solvent-additive enhanced crystallization and coverage of absorber layers for high efficiency formamidinium perovskite solar cells , 2016 .

[53]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[54]  Zonglong Zhu,et al.  A Low‐Temperature, Solution Processable Tin Oxide Electron‐Transporting Layer Prepared by the Dual‐Fuel Combustion Method for Efficient Perovskite Solar Cells , 2016 .

[55]  Songzhan Li,et al.  Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and understanding of the mechanism , 2016 .

[56]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[57]  Seong Sik Shin,et al.  Zn2SnO4-Based Photoelectrodes for Organolead Halide Perovskite Solar Cells , 2014 .

[58]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[59]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[60]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[61]  Wenguang Li,et al.  Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction , 2016 .

[62]  T. Miyasaka,et al.  Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells , 2015 .

[63]  Hyun Suk Jung,et al.  Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. , 2014, Nanoscale.

[64]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[65]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[66]  Weizhen Yu,et al.  Work‐Function‐Tunable Chlorinated Graphene Oxide as an Anode Interface Layer in High‐Efficiency Polymer Solar Cells , 2014 .

[67]  Sijian Yuan,et al.  Highly efficient planar perovskite solar cells via acid-assisted surface passivation , 2019, Journal of Materials Chemistry A.