Competitive formation of homocircuit [3]rotaxanes in synthetically useful yields in the bipyridine-mediated active template CuAAC reaction

We demonstrate that, depending on reaction conditions, [2]rotaxanes are produced in essentially quantitative yield in the AT-CuAAC reaction regardless of macrocycle size, and hard to access doubly threaded [3]rotaxanes can be synthesised in up to 50% isolated yield in a four component coupling step.

[1]  Y. Mutoh,et al.  Synthesis of [3]rotaxanes that utilize the catalytic activity of a macrocyclic phenanthroline-Cu Complex: remarkable effect of the length of the axle precursor. , 2015, Chemistry.

[2]  S. Moratti,et al.  Active-template synthesis of “click” [2]rotaxane ligands: self-assembly of mechanically interlocked metallo-supramolecular dimers, macrocycles and oligomers , 2014 .

[3]  Nicolaas A. Vermeulen,et al.  Formation of a hetero[3]rotaxane by a dynamic component-swapping strategy. , 2014, Chemical communications.

[4]  J. C. Barnes,et al.  Relative contractile motion of the rings in a switchable palindromic [3]rotaxane in aqueous solution driven by radical-pairing interactions , 2014, Organic & biomolecular chemistry.

[5]  P. Beer,et al.  Progress in the synthesis and exploitation of catenanes since the Millennium. , 2014, Chemical Society reviews.

[6]  S. Moratti,et al.  CuAAC "click" active-template synthesis of functionalised [2]rotaxanes using small exo-substituted macrocycles: how small is too small? , 2014, Chemical communications.

[7]  Henry S. Rzepa,et al.  Catalytic and Computational Studies of N-Heterocyclic Carbene or Phosphine-Containing Copper(I) Complexes for the Synthesis of 5-Iodo-1,2,3-Triazoles , 2014 .

[8]  S. Goldup,et al.  Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. , 2014, Chemical communications.

[9]  J. W. Ward,et al.  Efficient assembly of threaded molecular machines for sequence-specific synthesis. , 2014, Journal of the American Chemical Society.

[10]  Stephen M. Goldup,et al.  An Efficient Approach to Mechanically Planar Chiral Rotaxanes , 2014, Journal of the American Chemical Society.

[11]  Y. Mutoh,et al.  Synthesis of rotacatenanes by the combination of Cu-mediated threading reaction and the template method: the dual role of one ligand. , 2014, Chemical communications.

[12]  S. Goldup,et al.  Synthesis of a rotaxane Cu(I) triazolide under aqueous conditions. , 2013, Journal of the American Chemical Society.

[13]  Y. Mutoh,et al.  Synthesis of [2]rotaxanes by the copper-mediated threading reactions of aryl iodides with alkynes. , 2013, Organic letters.

[14]  C. Porco,et al.  Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions , 2013, Science.

[15]  J. W. Ward,et al.  Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine , 2013, Science.

[16]  J. F. Stoddart,et al.  Mechanostereochemistry and the mechanical bond , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  J. Gladysz,et al.  A new type of insulated molecular wire: a rotaxane derived from a metal-capped conjugated tetrayne. , 2012, Chemical communications.

[18]  A. L. Thompson,et al.  Synthesis of polyyne rotaxanes. , 2012, Organic letters.

[19]  J. Sauvage,et al.  Copper(I)-assembled [3]rotaxane whose two rings act as flapping wings. , 2012, Journal of the American Chemical Society.

[20]  P. Barran,et al.  Active-metal template synthesis of a molecular trefoil knot. , 2011, Angewandte Chemie.

[21]  C. Campbell,et al.  Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. , 2011, Angewandte Chemie.

[22]  H. Anderson,et al.  Template-directed synthesis of π-conjugated porphyrin [2]rotaxanes and a [4]catenane based on a six-porphyrin nanoring , 2011 .

[23]  P. Beer,et al.  A redox-active [3]rotaxane capable of binding and electrochemically sensing chloride and sulfate anions. , 2011, Chemical communications.

[24]  A. Slawin,et al.  En route to a molecular sheaf: active metal template synthesis of a [3]rotaxane with two axles threaded through one ring. , 2011, Journal of the American Chemical Society.

[25]  J Fraser Stoddart,et al.  Chemical topology: complex molecular knots, links, and entanglements. , 2011, Chemical reviews.

[26]  S. Goldup,et al.  Macrocycle size matters: "small" functionalized rotaxanes in excellent yield using the CuAAC active template approach. , 2011, Angewandte Chemie.

[27]  P. McGonigal,et al.  Ligand-assisted nickel-catalysed sp3–sp3 homocoupling of unactivated alkyl bromides and its application to the active template synthesis of rotaxanes , 2010 .

[28]  A. Slawin,et al.  An unusual nickel-copper-mediated alkyne homocoupling reaction for the active-template synthesis of [2]rotaxanes. , 2010, Journal of the American Chemical Society.

[29]  Kevin D. Haenni,et al.  Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles. , 2010, Journal of the American Chemical Society.

[30]  A. Slawin,et al.  Two axles threaded using a single template site: active metal template macrobicyclic [3]rotaxanes. , 2010, Journal of the American Chemical Society.

[31]  P. McGonigal,et al.  Active metal template synthesis of [2]catenanes. , 2009, Journal of the American Chemical Society.

[32]  J. F. Stoddart,et al.  The master of chemical topology. , 2009, Chemical Society reviews.

[33]  David A Leigh,et al.  Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. , 2009, Chemical Society reviews.

[34]  J. Sauvage,et al.  Passing two strings through the same ring using an octahedral metal center as template: a new synthesis of [3]rotaxanes. , 2009, Journal of the American Chemical Society.

[35]  J. Sauvage,et al.  Adjustable receptor based on a [3]rotaxane whose two threaded rings are rigidly attached to two porphyrinic plates: synthesis and complexation studies. , 2009, Journal of the American Chemical Society.

[36]  David A. Leigh,et al.  Hybrid organic–inorganic rotaxanes and molecular shuttles , 2009, Nature.

[37]  F. Zerbetto,et al.  Cadiot-Chodkiewicz active template synthesis of rotaxanes and switchable molecular shuttles with weak intercomponent interactions. , 2008, Angewandte Chemie.

[38]  J. Marois,et al.  [3]rotaxane-porphyrin conjugate as a novel supramolecular host for fullerenes. , 2008, Organic letters.

[39]  D. Díaz,et al.  Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. , 2007, Journal of the American Chemical Society.

[40]  B. Straub µ-Acetylide and µ-alkenylidene ligands in “click” triazole syntheses , 2007 .

[41]  Kevin D. Haenni,et al.  [2]Rotaxanes through palladium active-template oxidative heck cross-couplings. , 2007, Journal of the American Chemical Society.

[42]  Kevin D. Haenni,et al.  Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition. , 2007, Journal of the American Chemical Society.

[43]  V. Fokin,et al.  Enhanced Reactivity of Dinuclear Copper(I) Acetylides in Dipolar Cycloadditions , 2007 .

[44]  Kevin D. Haenni,et al.  A catalytic palladium active-metal template pathway to [2]rotaxanes. , 2007, Angewandte Chemie.

[45]  H. Anderson,et al.  Homo- and hetero-[3]rotaxanes with two pi-systems clasped in a single macrocycle. , 2006, Journal of the American Chemical Society.

[46]  S. Saito,et al.  Synthesis of [2]rotaxanes by the catalytic reactions of a macrocyclic copper complex. , 2006, Organic letters.

[47]  David A Leigh,et al.  Catalytic "click" rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. , 2006, Journal of the American Chemical Society.

[48]  M. Finn,et al.  Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. , 2005, Angewandte Chemie.

[49]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[50]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[51]  Jean-Pierre Sauvage,et al.  Une nouvelle famille de molecules : les metallo-catenanes , 1983 .

[52]  Eugen Reichel,et al.  1. A - C , 1909 .