Master-Slave Synchronization of Robot Manipulators Driven by Induction Motors

This paper presents an approach of master-slave synchronization of robot manipulators driven by induction motors supposing that the full state is available. Considering the input torque of each joint of the robot manipulators as the reference torque for induction motor, a feedback control law is used to synchronize position while track a desired trajectory. Based on Lyapunov analysis is shown that the controller yields semiglobal exponential convergence of the synchronization closed-loop errors. Simulations are provided to demonstrate the effectiveness of the proposed approach.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  Frank L. Lewis,et al.  Cooperative adaptive control for synchronization of second‐order systems with unknown nonlinearities , 2011 .

[3]  Hanlei Wang,et al.  Passivity based synchronization of multiple robotic agents with uncertain kinematics and dynamics , 2012, Proceedings of the 10th World Congress on Intelligent Control and Automation.

[4]  Frank L. Lewis,et al.  Distributed Adaptive Tracking Control for Synchronization of Unknown Networked Lagrangian Systems , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Henk Nijmeijer,et al.  Mutual synchronization of robots via estimated state feedback: a cooperative approach , 2004, IEEE Transactions on Control Systems Technology.

[6]  Yen-Chen Liu,et al.  Controlled Synchronization of Heterogeneous Robotic Manipulators in the Task Space , 2012, IEEE Transactions on Robotics.

[7]  Manuel Duarte Mermoud,et al.  Synchronization of Fractional-Order Systems of the Lorenz type: The Non- adaptive Case , 2014 .

[8]  Mark W. Spong,et al.  Output Synchronization of Nonlinear Systems with Relative Degree One , 2008, Recent Advances in Learning and Control.

[9]  Romeo Ortega,et al.  Synchronization of Networks of Nonidentical Euler-Lagrange Systems With Uncertain Parameters and Communication Delays , 2011, IEEE Transactions on Automatic Control.

[10]  Soon-Jo Chung,et al.  Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems , 2007, IEEE Transactions on Robotics.

[11]  Yassine Bouteraa,et al.  Distributed sliding mode control of cooperative robotic manipulators , 2013, 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13).

[12]  Kristin Y. Pettersen,et al.  Operational space synchronization of two robot manipulators through a virtual velocity estimate , 2008 .

[13]  Weisheng Yan,et al.  Mutual Synchronization of Multiple Robot Manipulators with Unknown Dynamics , 2012, J. Intell. Robotic Syst..

[14]  Zhou Jin,et al.  Tracking control in networked nonidentical Lagrange systems , 2013, Proceedings of the 32nd Chinese Control Conference.

[15]  Yu Tang,et al.  Motion control of rigid robots driven by current-fed induction motors , 1999 .

[16]  Nabil Derbel,et al.  Distributed Synchronization Control to Trajectory Tracking of Multiple Robot Manipulators , 2011, J. Robotics.

[17]  Guangfu Ma,et al.  Distributed Coordinated Tracking With a Dynamic Leader for Multiple Euler-Lagrange Systems , 2011, IEEE Transactions on Automatic Control.

[18]  L. L. N. dos Reis,et al.  An elbow planar manipulator driven by induction motors using sliding mode control for current loop , 2012 .

[19]  Antonello Monti,et al.  Dynamic Performance of a SCARA Robot Manipulator With Uncertainty Using Polynomial Chaos Theory , 2009, IEEE Transactions on Robotics.

[20]  Thor I. Fossen,et al.  Passivity-Based Designs for Synchronized Path Following , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[21]  M. A. Duarte,et al.  Synchronization of Fractional-Order Systems of the Lorenz type: The Non- adaptive Case , 2014, IEEE Latin America Transactions.

[22]  Romeo Ortega,et al.  Coordination of multi-agent Euler-Lagrange systems via energy-shaping: Networking improves robustness , 2013, Autom..

[23]  Han Yu,et al.  Passivity-based output synchronization of networked Euler-Lagrange systems subject to nonholonomic constraints , 2010, Proceedings of the 2010 American Control Conference.

[24]  R. Marino,et al.  Adaptive input-output linearizing control of induction motors , 1993, IEEE Trans. Autom. Control..

[25]  Ilia G. Polushin,et al.  Synchronization of Lagrangian Systems With Irregular Communication Delays , 2014, IEEE Transactions on Automatic Control.

[27]  Yi Guo,et al.  Backstepping-based synchronisation of uncertain networked Lagrangian systems , 2014, Int. J. Syst. Sci..

[28]  F. Sun,et al.  Distributed adaptive consensus algorithm for networked Euler-Lagrange systems , 2011 .

[29]  Yu Tang,et al.  Motion control of rigid robots driven by current-fed induction motors , 2001 .