Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale

Sorption heat storage has the potential to store large amounts of thermal energy from renewables and other distributed energy sources. This article provides an overview on the recent advancements on long-term sorption heat storage at material- and prototype- scales. The focus is on applications requiring heat within a temperature range of 30–150°C such as space heating, domestic hot water production, and some industrial processes.

[1]  Chi-Ying Vanessa Li,et al.  A functionalized MIL-101(Cr) metal-organic framework for enhanced hydrogen release from ammonia borane at low temperature. , 2013, Chemical communications.

[2]  Hans Müller-Steinhagen,et al.  New highly efficient regeneration process for thermochemical energy storage , 2013 .

[3]  Syed A.M. Said,et al.  A review of solar powered absorption systems , 2015 .

[4]  Yuri I. Aristov,et al.  Thermal conductivity of composite sorbents “salt in porous matrix” for heat storage and transformation , 2013 .

[5]  Thomas Osterland,et al.  Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage , 2016 .

[6]  Yoshio Yoshizawa,et al.  Operability of a thermally driven magnesium oxide/water chemical heat pump , 2001 .

[7]  Thomas Schmidt,et al.  A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage , 2014 .

[8]  Chris Bales,et al.  Laboratory Tests of Chemical Reactions and Prototype Sorption Storage Units : Report B4 of Subtask B , 2008 .

[9]  Ha Herbert Zondag,et al.  Characterization of the sorption process in thermochemical materials for seasonal solar heat storage application , 2012 .

[10]  A. Freni,et al.  Kinetics of water sorption on SWS-1L (calcium chloride confined to mesoporous silica gel): Influence of grain size and temperature , 2006 .

[11]  L. Cabeza,et al.  Corrosion Test of Salt Hydrates and Vessel Metals for Thermochemical Energy Storage , 2014 .

[12]  Yury I. Aristov,et al.  Novel Materials for Adsorptive Heat Pumping and Storage: Screening and Nanotailoring of Sorption Properties , 2007 .

[13]  Jan Carmeliet,et al.  Experience on the Development of a Thermo-chemical Storage System Based on Aqueous Sodium Hydroxide , 2014 .

[14]  R. Tol Quantifying the consensus on anthropogenic global warming in the literature: Rejoinder , 2014 .

[15]  Stefan K. Henninger,et al.  New two-component water sorbent CaCl2-FeKIL2 for solar thermal energy storage , 2012 .

[16]  Cooper H. Langford,et al.  SOLAR ENERGY STORAGE USING CHEMICAL POTENTIAL CHANGES ASSOCIATED WITH DRYING OF ZEOLITES , 1979 .

[17]  Miloslav Nic,et al.  Chemical terminology at your fingertips , 2006 .

[18]  Viktor Dorer,et al.  Operation Results of a Closed Sorption Heat Storage Prototype , 2015 .

[19]  K. Pielichowski,et al.  Phase change materials for thermal energy storage , 2014 .

[20]  Peter Lund,et al.  Review of energy system flexibility measures to enable high levels of variable renewable electricity , 2015 .

[21]  Thomas Schmidt,et al.  Hydration and dehydration of salt hydrates and hydroxides for thermal energy storage - kinetics and energy release , 2012 .

[22]  Morten Boje Blarke,et al.  SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables? , 2013 .

[23]  Pierre Neveu,et al.  Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance , 2014 .

[24]  Hideki Yamamoto,et al.  Performance of Thermal Energy Storage Unit Using Solid Ammoniated Salt (CaCl2-NH3 System) , 2014 .

[25]  Luisa F. Cabeza,et al.  Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite ☆ , 2015 .

[26]  Vincent Goetz,et al.  Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kW h by a solid/gas reaction , 2008 .

[27]  Saffa Riffat,et al.  Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage—Selection, synthesis and characterisation of candidate materials , 2014 .

[28]  Chris Bales,et al.  Thermal Properties of Materials for Thermo-chemical Storage of Solar Heat : Report B2 of Subtask B , 2005 .

[29]  L. W. Wang,et al.  Sorption thermal storage for solar energy , 2013 .

[30]  S. F. Smeding,et al.  Development of a prototype system for seasonal solar heat storage using an open sorption process , 2014 .

[31]  Yoshio Yoshizawa,et al.  Thermal performance of a packed bed reactor of a chemical heat pump for cogeneration , 2000 .

[32]  Andreas Hauer,et al.  ADSORPTION SYSTEMS FOR TES—DESIGN AND DEMONSTRATION PROJECTS , 2007 .

[33]  Yoshio Yoshizawa,et al.  Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system , 2005 .

[34]  Christian Obrecht,et al.  Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings , 2015 .

[35]  Sebastian Lourdudoss,et al.  An energy storing absorption heat pump process , 1987 .

[36]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[37]  ZEESHAN NAWAZ,et al.  DRASTIC ENHANCEMENT OF PROPENE YIELD FROM 1-HEXENE CATALYTIC CRACKING USING A SHAPE INTENSIFIED MESO-SAPO-34 CATALYST , 2010 .

[38]  Jianguo Yu,et al.  Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O , 2011 .

[39]  J.B.J. Veldhuis,et al.  Determination of structural, thermodynamic and phase properties in the Na2S–H2O system for application in a chemical heat pump , 2002 .

[40]  Viktor Dorer,et al.  Development of a Closed Sorption Heat Storage Prototype , 2014 .

[41]  Luisa F. Cabeza,et al.  State of the art on gas–solid thermochemical energy storage systems and reactors for building applications , 2015 .

[42]  D. Ackermann,et al.  Calorimetric investigation on zeolites, AlPO4's and CaCl2 impregnated attapulgite for thermochemical storage of heat , 2005 .

[43]  Stefan K. Henninger,et al.  MOFs for Use in Adsorption Heat Pump Processes , 2012 .

[44]  X. Py,et al.  The size of sorbents in low pressure sorption or thermochemical energy storage processes , 2014 .

[45]  Charles A. Wight,et al.  Thermal Decomposition Mechanism of NTO , 1996 .

[46]  Ruzhu Wang,et al.  A target‐oriented solid‐gas thermochemical sorption heat transformer for integrated energy storage and energy upgrade , 2013 .

[47]  Yu. I. Aristov,et al.  Sorption properties of calcium nitrate dispersed in silica gel : The effect of pore size , 2005 .

[48]  Robert V. Hoffman,et al.  Copper(II) Sulfate , 2007 .

[49]  Viktor Dorer,et al.  Limitations Imposed on Energy Density of Sorption Materials in Seasonal Thermal Storage Systems , 2015 .

[50]  Yuri I. Aristov,et al.  Synthesis and water sorption properties of a new composite “CaCl2 confined into SBA-15 pores” , 2010 .

[51]  Lingai Luo,et al.  A review on long-term sorption solar energy storage , 2009 .

[52]  Ha Herbert Zondag,et al.  Engineering assessment of reactor designs for thermochemical storage of solar heat , 2009 .

[53]  S. Kalaiselvam,et al.  Sustainable Thermal Energy Storage , 2014 .

[54]  I. Nielsen,et al.  Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies , 2016 .

[55]  Hans Müller-Steinhagen,et al.  Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X , 2014 .

[56]  Ha Herbert Zondag,et al.  Seasonal sorption heat storage - research on thermochemical materials and storage performances , 2012 .

[57]  P. Pinel,et al.  A review of available methods for seasonal storage of solar thermal energy in residential applications , 2011 .

[58]  Leo L Pel,et al.  Experimental studies for the cyclability of salt hydrates for thermochemical heat storage , 2016 .

[59]  Asnakech Lass-Seyoum,et al.  Transfer of laboratory results on closed sorption thermo- chemical energy storage to a large-scale technical system☆ , 2012 .

[60]  Saffa Riffat,et al.  The latest advancements on thermochemical heat storage systems , 2015 .

[61]  Marc A. Rosen,et al.  Closed and open thermochemical energy storage: Energy- and exergy-based comparisons , 2012 .

[62]  Luisa F. Cabeza,et al.  Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions , 2012 .

[63]  Yukitaka Kato,et al.  Dehydration and hydration behavior of metal-salt-modified materials for chemical heat pumps , 2013 .

[64]  Yukitaka Kato,et al.  Reactivity enhancement of chemical materials used in packed bed reactor of chemical heat pump , 2011 .

[65]  Christoph Janiak,et al.  MOFs as adsorbents for low temperature heating and cooling applications. , 2009, Journal of the American Chemical Society.

[66]  Ha Herbert Zondag,et al.  Characterization of Salt Hydrates for Compact Seasonal Thermochemical Storage , 2009 .

[67]  Stefan K. Henninger,et al.  Water Adsorption Characteristics of MIL‐101 for Heat‐Transformation Applications of MOFs , 2011 .

[68]  Gerald Englmair,et al.  An Open Sorption Heat Storage Concept and Materials for Building Heat Supply , 2015 .

[69]  Barbara Hughes,et al.  Energy storage , 2011 .

[70]  Viktor Dorer,et al.  Closed sorption heat storage based on aqueous sodium hydroxide , 2014 .

[71]  V. Dorer,et al.  Long-term heat storage with NaOH , 2008 .

[72]  Robert de Boer,et al.  Thermochemical seasonal solar heat storage in salt hydrates for residential applications - Influence of the water vapor pressure on the desorption kinetics of MgSO4.7H2O , 2014 .

[73]  Gerald Englmair,et al.  Development of a revolving drum reactor for open-sorption heat storage processes , 2014 .

[74]  W. Wagner,et al.  THERMO-CHEMICAL STORAGE FOR SOLAR SPACE HEATING IN A SINGLE-FAMILY HOUSE , 2006 .

[75]  Henner Kerskes,et al.  PROCESS AND REACTOR DESIGN FOR THERMO-CHEMICAL ENERGY STORES , 2011 .

[76]  Guy Ervin,et al.  Solar heat storage using chemical reactions , 1977 .

[77]  Yukitaka Kato,et al.  Study on medium-temperature chemical heat storage using mixed hydroxides , 2009 .

[78]  Harald Drück,et al.  Development of a Thermo-Chemical Energy Storage for Solar Thermal Applications , 2011 .

[79]  Ruud Cuypers,et al.  Thermochemical heat storage - system design issues , 2014 .

[80]  Hans Müller-Steinhagen,et al.  Low temperature chemical heat storage - an investigation of hydration reactions , 2009 .

[81]  Ruxu Du,et al.  An investigation of the solar powered absorption refrigeration system with advanced energy storage technology , 2011 .

[82]  Morten Boje Blarke,et al.  The effectiveness of storage and relocation options in renewable energy systems , 2008 .

[83]  H.Ö. Paksoy,et al.  Thermal energy storage (TES) systems for greenhouse technology , 2015 .

[84]  Vincent Goetz,et al.  Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems , 2006 .

[85]  Stefan K. Henninger,et al.  The Performance of Small‐Pore Microporous Aluminophosphates in Low‐Temperature Solar Energy Storage: The Structure–Property Relationship , 2012 .

[86]  Michael Steiger,et al.  Experimental Studies of the Mechanism and Kinetics of Hydration Reactions , 2014 .

[87]  Brent M. T. Lok,et al.  ALUMINOPHOSPHATE MOLECULAR SIEVES: A NEW CLASS OF MICROPOROUS CRYSTALLINE INORGANIC SOLIDS , 1982 .

[88]  Katsunori Nagano,et al.  A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system , 2015 .

[89]  Ruud Cuypers,et al.  Development of a seasonal thermochemical storage system , 2012 .

[90]  I. Fujii,et al.  Studies of an energy storage system by use of the reversible chemical reaction: CaO+H2O⇄Ca(OH)2 , 1985 .

[91]  K. Sopian,et al.  Review of the application of phase change material for heating and domestic hot water systems , 2015 .

[92]  C. Kaps,et al.  Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2 , 2010 .

[93]  Ruzhu Wang,et al.  Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy , 2013 .

[94]  Hans Voigt Heat pumping and transforming processes with intrinsic storage , 1985 .

[95]  S. Mauran,et al.  Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed , 2012 .

[96]  Wayne E. Wentworth,et al.  Simple thermal decomposition reactions for storage of solar thermal energy , 1975 .

[97]  I. Eames,et al.  A review of adsorbents and adsorbates in solid–vapour adsorption heat pump systems , 1998 .

[98]  Liu Hui,et al.  Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples , 2011 .

[99]  Marc Frère,et al.  Monitoring of thermal properties of a composite material used in thermochemical heat storage , 2014 .

[100]  C Claire Ferchaud,et al.  Experimental study of salt hydrates for thermochemical seasonal heat storage , 2016 .

[101]  Ha Herbert Zondag,et al.  Application of MgCl2•6H2O for thermochemical seasonal solar heat storage , 2010 .

[102]  H. Henning,et al.  Water adsorption characteristics of novel materials for heat transformation applications , 2010 .

[103]  Harald Drück,et al.  Chemical energy storage using reversible solid/gas-reactions (CWS) – results of the research project , 2012 .

[104]  Saffa Riffat,et al.  Thermochemical energy storage technologies for building applications: a state-of-the-art review , 2013 .

[105]  D. Ackermann,et al.  Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat , 2004 .

[106]  T. Kousksou,et al.  Energy storage: Applications and challenges , 2014 .

[107]  F. Kuznik,et al.  Development and characterisation of a new MgSO4−zeolite composite for long-term thermal energy storage , 2011 .

[108]  Ruzhu Wang,et al.  Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage , 2015 .

[109]  Jianhua Liu,et al.  Thermodynamic and Experimental Analysis of an Ammonia-Water Absorption Chiller , 2010 .

[110]  S. Kalaiselvam,et al.  Chapter 7 – Seasonal Thermal Energy Storage , 2014 .

[111]  Ruzhu Wang,et al.  A review of promising candidate reactions for chemical heat storage , 2015 .

[112]  Wenxing Shi,et al.  An overview of ammonia-based absorption chillers and heat pumps , 2014 .

[113]  Thomas Schmidt,et al.  Developed Materials for Thermal Energy Storage: Synthesis and Characterization , 2014 .

[114]  R. Cuypers,et al.  A Review on the Properties of Salt Hydrates for Thermochemical Storage , 2014 .

[115]  Ruud Cuypers,et al.  SHC 2013, International Conference on Solar Heating and Cooling for Buildings and Industry September 23-25, 2013, Freiburg, Germany Thermochemical heat storage - system design issues , 2014 .

[116]  Ruzhu Wang,et al.  A review of available technologies for seasonal thermal energy storage , 2014 .

[117]  S. Chungpaibulpatana,et al.  A review of absorption refrigeration technologies , 2001 .

[118]  Stuart L. Grassie,et al.  Modelling of a solar-operated absorption air conditioner system with refrigerant storage☆ , 1976 .

[119]  D. Scott Double-duty heat pump stores chemical heat too. [Tepidus system] , 1980 .

[120]  Ruud Cuypers,et al.  SHC 2013, International Conference on Solar Heating and Cooling for Buildings and Industry September 23-25, 2013, Freiburg, Germany Experimental results of a 3 kWh thermochemical heat storage module for space heating application , 2014 .

[121]  D. Kammen,et al.  Quantifying the consensus on anthropogenic global warming in the scientific literature , 2013 .

[122]  Gao Liuhua,et al.  A Review on Borehole Seasonal Solar Thermal Energy Storage , 2015 .

[123]  Ha Herbert Zondag,et al.  Characterization of MgSO4 Hydrate for Thermochemical Seasonal Heat Storage , 2009 .

[124]  Fariborz Haghighat,et al.  Thermal energy storage with phase change material—A state-of-the art review , 2014 .

[125]  Brent M. T. Lok,et al.  Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids , 1984 .

[126]  S. Kalaiselvam,et al.  Chapter 2 – Energy Storage , 2014 .

[127]  Yoshio Yoshizawa,et al.  Kinetic study of the hydration of magnesium oxide for a chemical heat pump , 1996 .

[128]  Andreas Hauer,et al.  Mobile Sorption Heat Storage in Industrial Waste Heat Recovery , 2015 .

[129]  Ha Herbert Zondag,et al.  Prototype thermochemical heat storage with open reactor system , 2013 .

[130]  Markus Rothmeyer,et al.  Thermochemical Heat Storage and Heat Transformation with Zeolites as Absorbents , 1981 .

[131]  A. Deydier,et al.  A review on high temperature thermochemical heat energy storage , 2014 .