Modeling Non-Equilibrium Dynamics of a Discrete Probability Distribution: General Rate Equation for Maximal Entropy Generation in a Maximum-Entropy Landscape with Time-Dependent Constraints

A rate equation for a discrete probability distribution is discussed as a route to describe smooth relaxation towards the maximum entropy distribution compatible at all times with one or more linear constraints. The resulting dynamics follows the path of steepest entropy ascent compatible with the constraints. The rate equation is consistent with the Onsager theorem of reciprocity and the fluctuation-dissipation theorem. The mathematical formalism was originally developed to obtain a quantum theoretical unification of mechanics and thermodinamics. It is presented here in a general, non-quantal formulation as a part of an effort to develop tools for the phenomenological treatment of non-equilibrium problems with applications in engineering, biology, sociology, and economics. The rate equation is also extended to include the case of assigned time-dependences of the constraints and the entropy, such as for modeling non-equilibrium energy and entropy exchanges.

[1]  J. Neumann,et al.  Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik , 1929 .

[2]  Ilya Prigogine,et al.  Introduction to Thermodynamics of Irreversible Processes , 1967 .

[3]  Gian Paolo Beretta,et al.  Thermodynamics: Foundations and Applications , 1991 .

[4]  S. Gheorghiu-Svirschevski Nonlinear quantum evolution with maximal entropy production , 2001 .

[5]  R. Levine,et al.  Collision experiments with partial resolution of final states: Maximum entropy procedure and surprisal analysis , 1979 .

[6]  Lars Onsager,et al.  Fluctuations and Irreversible Process. II. Systems with Kinetic Energy , 1953 .

[7]  Gian Paolo Beretta,et al.  Quantum thermodynamics. A new equation of motion for a single constituent of matter , 1984 .

[9]  Richard F. Greene,et al.  On the Formalism of Thermodynamic Fluctuation Theory , 1951 .

[10]  Lars Onsager,et al.  Fluctuations and Irreversible Processes , 1953 .

[11]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[12]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[13]  H. B. G. Casimir,et al.  On Onsager's Principle of Microscopic Reversibility , 1945 .

[14]  George N. Hatsopoulos,et al.  Principles of general thermodynamics , 1965 .

[15]  Gian Paolo Beretta Nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  I. Good,et al.  The Maximum Entropy Formalism. , 1979 .

[17]  Richard F. Greene,et al.  On a Theorem of Irreversible Thermodynamics , 1952 .

[18]  J. L. Jackson,et al.  Statistical Mechanics of Irreversibility , 1952 .

[19]  R. Levine Entropy and macroscopic disequilibrium. II. The information theoretic characterization of Markovian relaxation processes , 1976 .

[20]  Ariel Caticha,et al.  Change, time and information geometry , 2000 .

[21]  Gian Paolo Beretta,et al.  Quantum thermodynamics of nonequilibrium. Onsager reciprocity and dispersion-dissipation relations , 1987 .

[22]  Z. Jaeger,et al.  A nonlinear model for relaxation in excited closed physical systems , 2002 .

[23]  W. Wootters Statistical distance and Hilbert space , 1981 .

[24]  Elias P. Gyftopoulos,et al.  A unified quantum theory of mechanics and thermodynamics. Part I. Postulates , 1976 .

[25]  Gian Paolo Beretta,et al.  Steepest Entropy Ascent in Quantum Thermodynamics , 1987 .

[26]  J. Smart,et al.  The Nature of Physical Reality. , 1951 .

[27]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[28]  Gian Paolo Beretta,et al.  Thermodynamic derivations of conditions for chemical equilibrium and of Onsager reciprocal relations for chemical reactors. , 2004, The Journal of chemical physics.

[29]  Gian Paolo Beretta,et al.  Quantum thermodynamics. A new equation of motion for a general quantum system , 1985 .

[30]  D. Jou,et al.  Temperature in non-equilibrium states: a review of open problems and current proposals , 2003 .

[31]  Gian Paolo Beretta,et al.  On the general equation of motion of quantum thermodynamics and the distinction between quantal and nonquantal uncertainties , 2005, quant-ph/0509116.

[32]  R. Clausius,et al.  Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie , 1865 .

[33]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[34]  John Maddox Uniting mechanics and statistics , 1985, Nature.

[35]  Gian Paolo Beretta Time-energy and time-entropy uncertainty relations in dissipative quantum dynamics , 2005 .

[36]  Gian Paolo Beretta A General Nonlinear Evolution Equation for Irreversible Conservative Approach to Stable Equilibrium , 1986 .

[37]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[38]  Peter Salamon,et al.  Length in statistical thermodynamics , 1985 .

[39]  I. Good,et al.  The Maximum Entropy Formalism. , 1979 .

[40]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .