Measurement of the Heat Capacity of Copper Thin Films Using a Micropulse Calorimeter

This paper presents a micropulse calorimeter for heat capacity measurement of thin films. Optimization of the structure and data processing methods of the microcalorimeter improved the thermal isolation and temperature uniformity and reduced the heat capacity measurement errors. Heat capacities of copper thin films with thicknesses from 20 nm to 340 nm are measured in the temperature range from 300 K to 420 K in vacuum of 1 mPa. The specific heat of the 340 nm Cu film is close to the literature data of bulk Cu. For the thinner films, the data shows that the specific heat increases with the decreasing of film thickness (or the average crystalline size).

[1]  S. K. Watson,et al.  Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K , 1994 .

[2]  U. Welzel,et al.  Coefficients of thermal expansion of thin metal films investigated by non-ambient X-ray diffraction stress analysis , 2008 .

[3]  Y. Xiao,et al.  Phonon spectrum and specific heat of silicon nanowires , 2007 .

[4]  Jacques Chaussy,et al.  Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals , 1997 .

[5]  Polyimide sacrificial layer for an all-dry post-process surface micromachining module , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[6]  Wang Liding,et al.  Investigation of a Microcalorimeter for Thin-Film Heat Capacity Measurement , 2005 .

[7]  Z. Cui,et al.  Measurement of SiNx thin film thermal property with suspended membrane structure , 2004 .

[8]  Sun,et al.  Heat-capacity comparison among the nanocrystalline, amorphous, and coarse-grained polycrystalline states in element selenium. , 1996, Physical review. B, Condensed matter.

[9]  Leslie H. Allen,et al.  Heat capacity measurements of Sn nanostructures using a thin-film differential scanning calorimeter with 0.2 nJ sensitivity , 1997 .

[10]  Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials , 2003, cond-mat/0308549.

[11]  J. Rodríguez-Viejo,et al.  Design issues involved in the development of a membrane-based high-temperature nanocalorimeter , 2007 .

[12]  J. Rodríguez-Viejo,et al.  Nanocalorimetric analysis of the ferromagnetic transition in ultrathin films of nickel , 2008 .

[13]  A. Majumdar,et al.  Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures , 2002 .

[14]  P. Hopkins,et al.  Thermal Conductivity Measurements on Polycrystalline Silicon Microbridges Using the 3ω Technique , 2009 .

[15]  Leslie H. Allen,et al.  The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films , 2003 .

[16]  A. W. van Herwaarden,et al.  Overview of calorimeter chips for various applications , 2005 .

[17]  Michael L Roukes,et al.  Nanoscale, phonon-coupled calorimetry with sub-attojoule/Kelvin resolution. , 2005, Nano letters.

[18]  A. Cezairliyan,et al.  Specific heat of solids , 1988 .

[19]  K. Lu,et al.  Grain-size dependence of thermal properties of nanocrystalline elemental selenium studied by x-ray diffraction , 1997 .

[20]  Mikhail Yu. Efremov,et al.  Ultrasensitive, fast, thin-film differential scanning calorimeter , 2004 .

[21]  K. Jensen,et al.  Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples , 2005 .

[22]  D. Maillet,et al.  Effect of a thin layer on the measurement of the thermal diffusivity of a material by a flash method , 2000 .

[23]  Huang Zhengxing,et al.  In-Plane Thermal Diffusivity Measurement of Thin Films Based on the Alternating-Current Calorimetric Method Using an Optical Reflectivity Technique , 2004 .

[24]  Kow-Ming Chang,et al.  Design of low-temperature CMOS-process compatible membrane fabricated with sacrificial aluminum layer for thermally isolated applications , 2007 .

[25]  Rupp,et al.  Enhanced specific-heat-capacity (cp) measurements (150-300 K) of nanometer-sized crystalline materials. , 1987, Physical review. B, Condensed matter.

[26]  K. Goodson,et al.  Measurement of the Thermal Conductivity and Heat Capacity of Freestanding Shape Memory Thin Films Using the 3ω Method , 2008 .

[27]  C. Schick,et al.  Temperature distribution in a thin-film chip utilized for advanced nanocalorimetry , 2005 .

[28]  B. Warren,et al.  X-Ray Diffraction , 2014 .

[29]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[30]  I-Ming Hsing,et al.  An improved TMAH Si-etching solution without attacking exposed aluminum , 2000 .

[31]  Andrea Irace,et al.  Measurement of thermal conductivity and diffusivity of single and multilayer membranes , 1999 .

[32]  M. Efremov,et al.  Thin-film differential scanning nanocalorimetry: heat capacity analysis , 2004 .

[33]  P.C.H. Chan,et al.  An integrated gas sensor technology using surface micro-machining , 2002, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[34]  Andreas Wurm,et al.  Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers , 2007 .