Zernike vs. Bessel circular functions in visual optics

We propose the Bessel Circular Functions as alternatives of the Zernike Circle Polynomials to represent relevant circular ophthalmic surfaces.

[1]  Martin Schneider,et al.  Modeling Corneal Surfaces With Rational Functions for High-Speed Videokeratoscopy Data Compression , 2009, IEEE Transactions on Biomedical Engineering.

[2]  F. B. Introduction to Bessel Functions , 1939, Nature.

[3]  Andrei Martínez-Finkelshtein,et al.  Adaptive cornea modeling from keratometric data. , 2011, Investigative ophthalmology & visual science.

[4]  D. R. Iskander,et al.  Optimal modeling of corneal surfaces with Zernike polynomials , 2001, IEEE Transactions on Biomedical Engineering.

[5]  Lijuan Su,et al.  Whole-Surface Characterization of Progressive Addition Lenses , 2011, Optometry and vision science : official publication of the American Academy of Optometry.

[6]  J. Espinosa,et al.  Optical surface reconstruction technique through combination of zonal and modal fitting. , 2010, Journal of biomedical optics.

[7]  Pablo Artal,et al.  An Analytical Model Describing Aberrations in the Progression Corridor of Progressive Addition Lenses , 2006, Optometry and vision science : official publication of the American Academy of Optometry.

[8]  Henryk T Kasprzak,et al.  Approximating ocular surfaces by generalised conic curves , 2006, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[9]  R. Navarro,et al.  Multizone model for postsurgical corneas: analysis of standard and custom LASIK outcomes. , 2008, Journal of biomedical optics.

[10]  Peter Dirksen,et al.  Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  V. Mahajan Aberration Theory Made Simple , 1991 .

[12]  D. Koch,et al.  Fitting behaviors of Fourier transform and Zernike polynomials , 2007, Journal of cataract and refractive surgery.

[13]  C. Rao,et al.  Modified Gaussian influence function of deformable mirror actuators. , 2008, Optics express.

[14]  M. B. Roopashree,et al.  A Novel Model of Influence Function: Calibration of a Continuous Membrane Deformable Mirror , 2012 .

[15]  Justiniano Aporta,et al.  Representation of wavefronts in free-form transmission pupils with Complex Zernike Polynomials , 2011 .

[16]  Emil Wolf The diffraction theory of aberrations , 1951 .

[17]  V. Mahajan Optical Imaging and Aberrations , 1998 .

[18]  S. Klyce,et al.  Zernike polynomial fitting fails to represent all visually significant corneal aberrations. , 2003, Investigative ophthalmology & visual science.

[19]  Bernard Roelof Andries Nijboer The diffraction theory of aberrations , 1942 .

[20]  C. L. Beattie Table of first 700 zeros of Bessel functions — J l (x) and J' l (x) , 1958 .

[21]  Luis Alberto Carvalho,et al.  Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye. , 2005, Investigative ophthalmology & visual science.

[22]  Geunyoung Yoon,et al.  Comparison of Zernike and Fourier wavefront reconstruction algorithms in representing corneal aberration of normal and abnormal eyes. , 2008, Journal of refractive surgery.

[23]  J. M. Miller,et al.  Representation of videokeratoscopic height data with Zernike polynomials. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  Michael D Karon,et al.  Advantages and disadvantages of the Zernike expansion for representing wave aberration of the normal and aberrated eye. , 2004, Journal of refractive surgery.

[25]  Jorge L. Alio,et al.  An adaptive algorithm for the cornea modeling from keratometric data , 2010 .

[26]  N. Mcbride,et al.  Planetary impact crater analysis with eigenfunction expansion , 2002 .

[27]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[28]  J. Alió,et al.  Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data. , 2009, Investigative ophthalmology & visual science.

[29]  D. R. Iskander,et al.  Modeling Videokeratoscopic Height Data with Spherical Harmonics , 2009, Optometry and vision science : official publication of the American Academy of Optometry.

[30]  J. Schwiegerling,et al.  Using Corneal Height Maps and Polynomial Decomposition to Determine Corneal Aberrations , 1997, Optometry and vision science : official publication of the American Academy of Optometry.

[31]  H. F. Davis Fourier series and orthogonal functions , 1965 .

[32]  F. Hendrikse,et al.  Development of a Wide Field Height Eye Topographer: Validation on Models of the Anterior Eye Surface , 1998, Optometry and vision science : official publication of the American Academy of Optometry.

[33]  Mark R. Morelande,et al.  A refined bootstrap method for estimating the Zernike polynomial model order for corneal surfaces , 2004, IEEE Transactions on Biomedical Engineering.

[34]  J. Murphy,et al.  The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems , 2003 .

[35]  Qing Wang,et al.  Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.