Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models

Extracting parameters and constructing high-precision models of photovoltaic modules through actual current-voltage data is required for simulation, control, and optimization of a photovoltaic system. Because of the application of such problems, the identification of unknown parameters accurately and reliably remains a challenging task. In this paper, we propose an enhanced Harris Hawks Optimization (EHHO), which combines orthogonal learning (OL) and general opposition-based learning (GOBL), to estimate the parameters of solar cells and photovoltaic modules effectively and accurately. In EHHO, OL helps to improve the speed of the HHO method and the accuracy of the solution. At the same time, the GOBL mechanism can increase both diversity of the population and the HHO’s exploitation performance. In addition, these two mechanisms defend the equilibrium between the exploitation and exploration rates. The results show that accuracy, reliability, and other aspects of this method are better than most existing methods. Thus, we observed that EHHO can be used as an effective method for parameter estimation of solar cells and photovoltaic modules.

[1]  Kusum Deep,et al.  Improved Grey Wolf Optimizer Based on Opposition-Based Learning , 2017, SocProS.

[2]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[3]  H. Moayedi,et al.  Applicability of a CPT-Based Neural Network Solution in Predicting Load-Settlement Responses of Bored Pile , 2018, International Journal of Geomechanics.

[4]  Leandro dos Santos Coelho,et al.  An improved free search differential evolution algorithm: A case study on parameters identification of one diode equivalent circuit of a solar cell module , 2015 .

[5]  Jiangang Yao,et al.  A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models , 2018 .

[6]  Hao Chen,et al.  Advanced orthogonal learning-driven multi-swarm sine cosine optimization: Framework and case studies , 2020, Expert Syst. Appl..

[7]  Hossam Faris,et al.  An intelligent system for spam detection and identification of the most relevant features based on evolutionary Random Weight Networks , 2019, Inf. Fusion.

[8]  Hossein Moayedi,et al.  An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand , 2017, Neural Computing and Applications.

[9]  R. P. Saini,et al.  Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints , 2017 .

[10]  Xiaoqin Zhang,et al.  An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine , 2020, Appl. Soft Comput..

[11]  Daling Wang,et al.  Occupation recommendation based on student achievement mining in vocational skill training , 2014, 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[12]  Huiling Chen,et al.  Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models , 2020 .

[13]  Anis Sakly,et al.  Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction , 2018, Energy Conversion and Management.

[14]  Muhammad Kamran Siddiqui,et al.  Study of biological networks using graph theory , 2017, Saudi journal of biological sciences.

[15]  Huiling Chen,et al.  Slime mould algorithm: A new method for stochastic optimization , 2020, Future Gener. Comput. Syst..

[16]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[17]  Hui Huang,et al.  Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses , 2017, Neurocomputing.

[18]  Dayou Liu,et al.  Evolving support vector machines using fruit fly optimization for medical data classification , 2016, Knowl. Based Syst..

[19]  Yong Wang,et al.  Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm , 2017 .

[20]  Zhijian Wu,et al.  Enhancing particle swarm optimization using generalized opposition-based learning , 2011, Inf. Sci..

[21]  Wei Gao,et al.  An independent set degree condition for fractional critical deleted graphs , 2019, Discrete & Continuous Dynamical Systems - S.

[22]  Wei-Chang Yeh,et al.  Simplified swarm optimisation for the solar cell models parameter estimation problem , 2017 .

[23]  Ashish K. Panchal,et al.  Extraction of solar cell parameters from a single current–voltage characteristic using teaching learning based optimization algorithm , 2014 .

[24]  Huiling Chen,et al.  An Effective Machine Learning Approach for Prognosis of Paraquat Poisoning Patients Using Blood Routine Indexes , 2017, Basic & clinical pharmacology & toxicology.

[25]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[26]  Qingfu Zhang,et al.  An orthogonal genetic algorithm for multimedia multicast routing , 1999, IEEE Trans. Evol. Comput..

[27]  Hossam Faris,et al.  An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems , 2018, Knowl. Based Syst..

[28]  Yan Wei,et al.  Predicting Entrepreneurial Intention of Students: An Extreme Learning Machine With Gaussian Barebone Harris Hawks Optimizer , 2020, IEEE Access.

[29]  Vineet Kumar,et al.  PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm , 2017, Swarm Evol. Comput..

[30]  Huiling Chen,et al.  A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems , 2020, Appl. Math. Comput..

[31]  Xuehua Zhao,et al.  A balanced whale optimization algorithm for constrained engineering design problems , 2019, Applied Mathematical Modelling.

[32]  Amir Mohammad Beigi,et al.  Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms , 2018, Solar Energy.

[33]  Xin Wang,et al.  Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization , 2017 .

[34]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[35]  Qian Zhang,et al.  Multi-strategy boosted mutative whale-inspired optimization approaches , 2019, Applied Mathematical Modelling.

[36]  Hossam Faris,et al.  Harris hawks optimization: Algorithm and applications , 2019, Future Gener. Comput. Syst..

[37]  Wei Gao,et al.  Nano properties analysis via fourth multiplicative ABC indicator calculating , 2017, Arabian Journal of Chemistry.

[38]  Qiao Weibiao Differential Scanning Calorimetry and Electrochemical Tests for the Analysis of Delamination of 3PE Coatings , 2019, International Journal of Electrochemical Science.

[39]  Yuehong Sun,et al.  An improved double-population artificial bee colony algorithm based on heterogeneous comprehensive learning , 2018, Soft Comput..

[40]  Xuehua Zhao,et al.  Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts , 2020 .

[41]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[42]  Ahmed A. Ewees,et al.  Improved grasshopper optimization algorithm using opposition-based learning , 2018, Expert Syst. Appl..

[43]  Wu Deng,et al.  An Improved Ant Colony Optimization Algorithm Based on Hybrid Strategies for Scheduling Problem , 2019, IEEE Access.

[44]  Pengjun Wang,et al.  Efficient multi-population outpost fruit fly-driven optimizers: Framework and advances in support vector machines , 2020, Expert Syst. Appl..

[45]  Rabeh Abbassi,et al.  Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach , 2020, Energy.

[46]  A. R. Jordehi Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules , 2018 .

[47]  Xin Xu,et al.  Adaptive computational chemotaxis based on field in bacterial foraging optimization , 2014, Soft Comput..

[48]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[49]  Songfeng Lu,et al.  Feature Selection Based on Improved Runner-Root Algorithm Using Chaotic Singer Map and Opposition-Based Learning , 2017, ICONIP.

[50]  Xiao Wenbo,et al.  Review of Parameter extraction methods for single-diode model of solar cell , 2018 .

[51]  Mohamed A. Awadallah,et al.  Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data , 2016 .

[52]  Hossein Moayedi,et al.  Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods , 2018, Appl. Soft Comput..

[53]  Saad Mekhilef,et al.  Solar cell parameters extraction based on single and double-diode models: A review , 2016 .

[54]  Rabeh Abbassi,et al.  An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models , 2019, Energy Conversion and Management.

[55]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[56]  Wei Gao,et al.  Partial multi-dividing ontology learning algorithm , 2018, Inf. Sci..

[57]  Xu Chen,et al.  An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models , 2019, Energy Conversion and Management.

[58]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[59]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[60]  Yuping Wang,et al.  An orthogonal genetic algorithm with quantization for global numerical optimization , 2001, IEEE Trans. Evol. Comput..

[61]  Hossam Faris,et al.  Evolutionary Population Dynamics and Grasshopper Optimization approaches for feature selection problems , 2017, Knowl. Based Syst..

[62]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[63]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[64]  Mohamed Abd Elaziz,et al.  Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm , 2018, Energy Conversion and Management.

[65]  Ying Huang,et al.  Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients , 2019, Comput. Biol. Chem..

[66]  Lei Guo,et al.  Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm , 2016 .

[67]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[68]  Hamid R. Tizhoosh,et al.  Opposition-Based Learning: A New Scheme for Machine Intelligence , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[69]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[70]  Daoliang Li,et al.  Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton , 2014, Appl. Soft Comput..

[71]  Chengye Li,et al.  Gaussian mutational chaotic fruit fly-built optimization and feature selection , 2020, Expert Syst. Appl..

[72]  Yu He,et al.  Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm , 2018, Energy Conversion and Management.

[73]  Xiaoqin Zhang,et al.  Enhanced Moth-flame optimizer with mutation strategy for global optimization , 2019, Inf. Sci..

[74]  Mingjing Wang,et al.  Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules , 2020 .

[75]  F. Dkhichi,et al.  Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing , 2014 .

[76]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[77]  T. Khatib,et al.  Extraction of photovoltaic module model's parameters using an improved hybrid differential evolution/electromagnetism-like algorithm , 2015 .

[78]  Yuqing He,et al.  Parameter extraction of solar cell models using chaotic asexual reproduction optimization , 2014, Neural Computing and Applications.

[79]  Jing Liang,et al.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models , 2018, Applied Energy.

[80]  Xuehua Zhao,et al.  An improved grasshopper optimization algorithm with application to financial stress prediction , 2018, Applied Mathematical Modelling.

[81]  Seyed Mohammad Mirjalili,et al.  A hyper-heuristic for improving the initial population of whale optimization algorithm , 2019, Knowl. Based Syst..

[82]  Huiling Chen,et al.  Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis , 2020, Appl. Soft Comput..

[83]  Pengjun Wang,et al.  Chaos-enhanced synchronized bat optimizer , 2020 .

[84]  Huiling Chen,et al.  Orthogonally-designed adapted grasshopper optimization: A comprehensive analysis , 2020, Expert Syst. Appl..

[85]  M. Chegaar,et al.  Organic and inorganic solar cells parameters evaluation from single I–V plot , 2008 .

[86]  Wu Deng,et al.  A novel collaborative optimization algorithm in solving complex optimization problems , 2016, Soft Computing.

[87]  Zhong-qiang Wu,et al.  Parameter identification of photovoltaic cell model based on improved ant lion optimizer , 2017 .

[88]  Chao Huang,et al.  A novel Elite Opposition-based Jaya algorithm for parameter estimation of photovoltaic cell models , 2018 .

[89]  Amir H. Gandomi,et al.  Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies , 2020, Future Gener. Comput. Syst..