The Computational Complexity of Some Problems of Linear Algebra

We consider the computational complexity of some problems dealing with matrix rank. Let E, S be subsets of a commutative ring R. Let x1, x2, ?, xt be variables. Given a matrix M=M(x1, x2, ?, xt) with entries chosen from E?{x1, x2, ?, xt}, we want to determine maxrankS(M)=max(a1, a2, ?, at)?St rank M(a1, a2, ?, at) and minrankS(M)=min(a1, a2, ?, at)?St rank M(a1, a2, ?, at). There are also variants of these problems that specify more about the structure of M, or instead of asking for the minimum or maximum rank, they ask if there is some substitution of the variables that makes the matrix invertible or noninvertible. Depending on E, S, and which variant is studied, the complexity of these problems can range from polynomial-time solvable to random polynomial-time solvable to NP-complete to PSPACE-solvable to unsolvable. An approximation version of the minrank problem is shown to be MAXSNP-hard.

[1]  Ian Stark Names, Equations, Relations: Practical Ways to Reason about new , 1997, TLCA.

[2]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[3]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[4]  Satyanarayana V. Lokam Spectral methods for matrix rigidity with applications to size-depth tradeoffs and communication complexity , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[5]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[6]  Devdatt P. Dubhashi,et al.  Negative dependence through the FKG Inequality , 1996 .

[7]  Lars Arge,et al.  The I/O - Complexity of Ordered Binary - Decision Diagram Manipulation , 1995, ISAAC.

[8]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[9]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[10]  Leiba Rodman,et al.  Ranks of Completions of Partial Matrices , 1989 .

[11]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[12]  Raphael Loewy,et al.  A determinantal version of the frobenius-könig theorem , 1984 .

[13]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[14]  Yuri Matiyasevich,et al.  Hilbert’s tenth problem , 2019, 100 Years of Math Milestones.

[15]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[16]  Lars Arge,et al.  The Buuer Tree: a New Technique for Optimal I/o-algorithms ? , 1995 .

[17]  P. S. Thiagarajan,et al.  Regular Trace Event Structures , 1996 .

[18]  Joel Friedman,et al.  A note on matrix rigidity , 1993, Comb..

[19]  Mihir Bellare,et al.  Free Bits, PCPs, and Nonapproximability-Towards Tight Results , 1998, SIAM J. Comput..

[20]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[21]  Pascal Koiran Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..

[22]  Kazuo Murota,et al.  Mixed Matrices — Irreducibility and Decomposition — ⁄ , 1993 .

[23]  Paul J. Cohen,et al.  Decision procedures for real and p‐adic fields , 1969 .

[24]  Christiane Hespel,et al.  Approximation de Séries Formelles Par des Séries Rationnelles , 1984, RAIRO Theor. Informatics Appl..

[25]  Desh Ranjan,et al.  Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.

[26]  V. Klee,et al.  Combinatorial and graph-theoretical problems in linear algebra , 1993 .

[27]  Jeffrey Shallit,et al.  The Computational Complexity of Some Problems of Linear Algebra , 1996 .

[28]  Peter Bro Miltersen,et al.  Fusion Trees can be Implemented with AC0 Instructions Only , 1999, Theor. Comput. Sci..

[29]  Doug Ierardi,et al.  Quantifier elimination in the theory of an algebraically-closed field , 1989, STOC '89.

[30]  Fernando Q. Gouvêa,et al.  P-Adic Numbers: An Introduction , 1993 .

[31]  R. Tennant Algebra , 1941, Nature.

[32]  J. Geelen Maximum rank matrix completion , 1999 .

[33]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[34]  Mihir Bellare,et al.  Free bits, PCPs and non-approximability-towards tight results , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[35]  James Renegar On the computational complexity and geome-try of the first-order theory of the reals , 1992 .

[36]  Lavinia Egidi,et al.  A quantifier elimination for the theory of p-adic numbers , 1998, computational complexity.

[37]  Robin Milner An Action Structure for Synchronous pi-Calculus , 1993, FCT.

[38]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[39]  Allan Borodin,et al.  Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[40]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[41]  Lavinia Egidi,et al.  The complexity of the theory of p-adic numbers , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.