The free energy of mechanically unstable phases

Phase diagrams provide ‘roadmaps' to the possible states of matter. Their determination traditionally rests on the assumption that all phases, even unstable ones, have well-defined free energies under all conditions. However, this assumption is commonly violated in condensed phases due to mechanical instabilities. This long-standing problem impedes thermodynamic database development, as pragmatic attempts at solving this problem involve delicate extrapolations that are highly nonunique and that lack an underlying theoretical justification. Here we propose an efficient computational solution to this problem that has a simple interpretation, both as a topological partitioning of atomic configuration space and as a minimally constrained physical system. Our natural scheme smoothly extends the free energy of stable phases, without relying on extrapolation, thus enabling a formal assessment of widely used extrapolation schemes.

[1]  Yi Wang,et al.  Ab initio lattice stability in comparison with CALPHAD lattice stability , 2004 .

[2]  Gus L. W. Hart,et al.  Evolutionary approach for determining first-principles hamiltonians , 2005, Nature materials.

[3]  A. Dinsdale SGTE data for pure elements , 1991 .

[4]  A. Dinsdale,et al.  Metastable lattice stabilities for the elements , 1988 .

[5]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[6]  A. van de Walle,et al.  The effect of lattice vibrations on substitutional alloy thermodynamics , 2001, cond-mat/0106490.

[7]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[8]  Graeme Henkelman,et al.  A generalized solid-state nudged elastic band method. , 2012, The Journal of chemical physics.

[9]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[10]  Ralf Eggeling,et al.  User guide , 2000 .

[11]  David Roundy,et al.  Ideal strength of bcc molybdenum and niobium , 2002 .

[12]  A. V. D. Walle,et al.  Methods for First-Principles Alloy Thermodynamics , 2013 .

[13]  C. Krenn,et al.  Phonon instabilities and the ideal strength of aluminum. , 2003, Physical review letters.

[14]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[15]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[16]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[17]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[18]  Hannes Jonsson,et al.  Reversible work transition state theory: application to dissociative adsorption of hydrogen , 1995 .

[19]  Kristin A. Persson,et al.  Lattice instabilities in metallic elements , 2012 .

[20]  Watson,et al.  Local stability of nonequilibrium phases. , 1994, Physical review letters.

[21]  V. Ozoliņš,et al.  PHONON INSTABILITIES IN FCC AND BCC TUNGSTEN , 1997 .

[22]  Gregory K. Schenter,et al.  Application to Dissociative Adsorption of Hydrogen , 1995 .

[23]  V. Ozoliņš,et al.  First-principles calculations of free energies of unstable phases: the case of fcc W. , 2009, Physical review letters.

[24]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[25]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[26]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[27]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases - recent developments , 2009 .

[28]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[29]  Ursula R. Kattner,et al.  Computational Thermodynamics: Recent developments and future potential and prospects , 2014 .

[30]  A. van de Walle,et al.  A complete representation of structure – property relationships in crystals , 2008 .

[31]  Grimvall,et al.  Phase stabilities in the Pt-W system: Thermodynamic and electronic-structure calculations. , 1995, Physical review. B, Condensed matter.

[32]  Jan-Olof Andersson,et al.  The Thermo-Calc databank system☆ , 1985 .

[33]  L. Goddard Approximation of Functions , 1965, Nature.

[34]  Herzig,et al.  Phonon dispersion of the bcc phase of group-IV metals. I. bcc titanium. , 1991, Physical review. B, Condensed matter.

[35]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[36]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[37]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[38]  David L. Olmsted,et al.  First-principles study of the structural and elastic properties of rhenium-based transition-metal alloys , 2012 .

[39]  G. Vineyard Frequency factors and isotope effects in solid state rate processes , 1957 .

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  Herzig,et al.  Phonon dispersion of the bcc phase of group-IV metals. III. bcc hafnium. , 1991, Physical review. B, Condensed matter.