A novel colorimetric and fluorescent chemosensor: synthesis and selective detection for Cu2+ and Hg2+

[1]  Joel H. Hildebrand,et al.  A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons , 1949 .

[2]  D. McClure,et al.  Spin‐Orbit Interaction in Aromatic Molecules , 1952 .

[3]  E. Wehry,et al.  Interactions of transition-metal ions with photoexcited states of flavins. Fluorescence quenching studies. , 1972, Journal of the American Chemical Society.

[4]  Y. Kuroda,et al.  Convenient synthesis of macrocyclic compounds containing two of nitrogen, oxygen or sulfur atoms , 1976 .

[5]  M. Kodama,et al.  Equilibria and kinetics of copper(II) complex formation of a linear and of 13–15-membered macrocyclic dioxo-tetra-amines , 1979 .

[6]  M. Kodama,et al.  Dioxygen uptake by cobalt(II) complexes of macrocyclic polyamines. Effects of chelate ring size and substituents , 1983 .

[7]  R. Hay,et al.  Kinetics of the acid dissociation of the copper(II) and nickel(II) complexes of 5,7-dioxo-1,4,8,11-tetraazacyclotetradecane , 1984 .

[8]  T. Koike,et al.  Effects of imide anions and axial donors on the stability and oxidation behavior of square-planar 13-15-membered macrocyclic tetraamine complexes of nickel(II) and copper(II) , 1984 .

[9]  E. Kimura DISTINCTIVE COORDINATION CHEMISTRY AND BIOLOGICAL RELEVANCE OF COMPLEXES WITH MACROCYCLIC OXO POLYAMINES , 1986 .

[10]  M. Kodama,et al.  The complexation equilibria of mercury(II) ions with macromonocyclic 16-membered dioxopentamine, 18-membered dioxohexamine, and their related compounds , 1989 .

[11]  S. R. Cooper Crown compounds : toward future applications , 1992 .

[12]  M. Shortreed,et al.  Fluorescent fiber-optic calcium sensor for physiological measurements. , 1996, Analytical chemistry.

[13]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[14]  K. Kanaori,et al.  Intramolecular d-π interaction of Ni(II) and Pd(II) azacrown ether complexes having an aromatic pendant moiety , 1997 .

[15]  Robert G. Brown,et al.  ENHANCED NONRADIATIVE DECAY IN AQUEOUS SOLUTIONS OF AMINONAPHTHALIMIDE DERIVATIVES VIA WATER-CLUSTER FORMATION , 1997 .

[16]  X. Bu,et al.  New macrocyclic dioxotetraamines bearing 2-pyridylmethyl as functional donor pendant(s): synthesis, properties and crystal structure of their copper(II) complexes† , 1998 .

[17]  I. Leray,et al.  Design principles of fluorescent molecular sensors for cation recognition , 2000 .

[18]  A. P. Silva,et al.  Combining luminescence, coordination and electron transfer for signalling purposes , 2000 .

[19]  H. Schneider,et al.  Principles and Methods in Supramolecular Chemistry , 2000 .

[20]  Luca Prodi,et al.  Luminescent chemosensors for transition metal ions , 2000 .

[21]  D W Boening,et al.  Ecological effects, transport, and fate of mercury: a general review. , 2000, Chemosphere.

[22]  Chengtai Wu,et al.  Synthesis and properties of some novel ferrocene macrocyclic dioxopolyamines , 2000 .

[23]  Quan Yuan,et al.  Properties of some ferrocene macrocyclic dioxotetraamines: the roles of aromatic side-arms , 2001 .

[24]  S. Saha,et al.  Influence of the Structure of the Amino Group and Polarity of the Medium on the Photophysical Behavior of 4-Amino-1,8-naphthalimide Derivatives , 2002 .

[25]  T. Gunnlaugsson,et al.  Synthesis and evaluation of colorimetric chemosensors for monitoring sodium and potassium ions in the intracellular concentration range , 2002 .

[26]  T. Gunnlaugsson,et al.  Highly selective colorimetric naked-eye Cu(II) detection using an azobenzene chemosensor. , 2004, Organic letters.

[27]  X. Qian,et al.  A novel chromatism switcher with double receptors selectively for Ag+ in neutral aqueous solution: 4,5-diaminoalkeneamino-N-alkyl-l,8-naphthalimides , 2004 .

[28]  Zhaochao Xu,et al.  Colorimetric and ratiometric fluorescent chemosensor with a large red-shift in emission: Cu(II)-only sensing by deprotonation of secondary amines as receptor conjugated to naphthalimide fluorophore. , 2005, Organic letters.

[29]  Alberto Tárraga,et al.  New Hg2+ and Cu2+ selective chromo- and fluoroionophore based on a bichromophoric azine. , 2005, Organic letters.

[30]  M. Licchelli,et al.  A two-channel chemosensor for the optical detection of carboxylic acids, including cholic acid , 2005 .

[31]  A. Tong,et al.  A new rhodamine-based chemosensor exhibiting selective Fe(III)-amplified fluorescence. , 2006, Organic letters.

[32]  A. Tong,et al.  New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. , 2006, Organic letters.

[33]  P. Molina,et al.  2-Aza-1,3-butadiene derivatives featuring an anthracene or pyrene unit: highly selective colorimetric and fluorescent signaling of Cu2+ cation. , 2006, Organic letters.

[34]  E. Palomares,et al.  Optical mercury sensing using a benzothiazolium hemicyanine dye. , 2006, Organic letters.

[35]  A. Samanta,et al.  A colorimetric chemosensor for both fluoride and transition metal ions based on dipyrrolyl derivative. , 2006, Dalton transactions.

[36]  X. Qian,et al.  Detecting Hg2+ ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity. , 2006, The Journal of organic chemistry.