The beta generalized gamma distribution

For the first time, a new five-parameter distribution, called the beta generalized gamma distribution, is introduced and studied. It contains at least 25 special sub-models such as the beta gamma, beta Weibull, beta exponential, generalized gamma (GG), Weibull and gamma distributions and thus could be a better model for analysing positive skewed data. The new density function can be expressed as a linear combination of GG densities. We derive explicit expressions for moments, generating function and other statistical measures. The elements of the expected information matrix are provided. The usefulness of the new model is illustrated by means of a real data set.

[1]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[2]  H. Leon Harter,et al.  Maximum-Likelihood Estimation of the Parameters of a Four-Parameter Generalized Gamma Population from Complete and Censored Samples , 1967 .

[3]  Lee J. Bain,et al.  Inferential Procedures for the Generalized Gamma Distribution , 1970 .

[4]  R. Prentice A LOG GAMMA MODEL AND ITS MAXIMUM LIKELIHOOD ESTIMATION , 1974 .

[5]  J. Lawless Inference in the Generalized Gamma and Log Gamma Distributions , 1980 .

[6]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[7]  T. J. DiCiccio Approximate inference for the generalized gamma distribution , 1987 .

[8]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[9]  Alan D. Hutson,et al.  The exponentiated weibull family: some properties and a flood data application , 1996 .

[10]  Peter K. Dunn,et al.  Randomized Quantile Residuals , 1996 .

[11]  D. Kundu,et al.  EXPONENTIATED EXPONENTIAL FAMILY: AN ALTERNATIVE TO GAMMA AND WEIBULL DISTRIBUTIONS , 2001 .

[12]  F. Famoye,et al.  BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .

[13]  S. Nadarajah,et al.  The beta Gumbel distribution , 2004 .

[14]  Saralees Nadarajah,et al.  On the Moments of the Exponentiated Weibull Distribution , 2005 .

[15]  Pandu R. Tadikamalla,et al.  Random sampling from the generalized gamma distribution , 1979, Computing.

[16]  Amit Choudhury,et al.  A Simple Derivation of Moments of the Exponentiated Weibull Distribution , 2005 .

[17]  Manisha Pal,et al.  Exponentiated Weibull distribution , 2006 .

[18]  Ping-Huang Huang,et al.  ON NEW MOMENT ESTIMATION OF PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION USING IT’S CHARACTERIZATION , 2006 .

[19]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[20]  Felix Famoye,et al.  Journal of Modern Applied StatisticalMethods Beta-Weibull Distribution: Some Properties and Applications to Censored Data , 2022 .

[21]  Haitao Chu,et al.  Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution , 2007, Statistics in medicine.

[22]  Carl Lee,et al.  On the Properties of Beta-Gamma Distribution , 2007 .

[23]  Malwane M. A. Ananda,et al.  A Generalization of the Half-Normal Distribution with Applications to Lifetime Data , 2008 .

[24]  On the use of the generalised gamma distribution , 2008 .

[25]  Alain Dussauchoy,et al.  Parameter estimation of the generalized gamma distribution , 2008, Math. Comput. Simul..

[26]  Constantine Kotropoulos,et al.  Phonemic segmentation using the generalised Gamma distribution and small sample Bayesian information criterion , 2008, Speech Commun..

[27]  Narayanaswamy Balakrishnan,et al.  On families of beta- and generalized gamma-generated distributions and associated inference , 2009 .

[28]  Gauss M. Cordeiro,et al.  The beta generalized half-normal distribution , 2010, Comput. Stat. Data Anal..

[29]  Gauss M. Cordeiro,et al.  The beta generalized exponential distribution , 2008, 0809.1889.

[30]  Gauss M. Cordeiro,et al.  The beta Burr XII distribution with application to lifetime data , 2011, Comput. Stat. Data Anal..

[31]  Saralees Nadarajah,et al.  General results for the beta Weibull distribution , 2013 .

[32]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .