Chapter 25 Functional studies of cholecystokinin-dopamine coexistence: electrophysiology and behavior

[1]  S. Paul,et al.  Cholecystokinin potentiates dopamine-mediated behaviors: evidence for modulation specific to a site of coexistence , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  D. Hommer,et al.  Topographical analysis of nucleus accumbens sites at which cholecystokinin potentiates dopamine-induced hyperlocomotion in the rat , 1985, Brain Research.

[3]  M. Palkovits,et al.  Cholecystokinin-induced excitation in the substantia nigra: evidence for peripheral and central components , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  L. Wennogle,et al.  Characterization of central cholecystokinin receptors using a radioiodinated octapeptide probe. , 1985, Life sciences.

[5]  D. Hommer,et al.  Behavioral and neurophysiological evidence for a facilatory interaction between co-existing transmitters: cholecystokinin and dopamine , 1984, Neurochemistry International.

[6]  T. Chase,et al.  Cholecystokinin-octapeptide fragments: binding to brain cholecystokinin receptors. , 1984, European journal of pharmacology.

[7]  D. K. Meyer,et al.  Dopamine D1-receptor stimulation reduces neostriatal cholecystokinin release. , 1984, European Journal of Pharmacology.

[8]  J. Crawley,et al.  Analysis of the behavioral activity of C- and N-terminal fragments of cholecystokinin octapeptide. , 1984, The Journal of pharmacology and experimental therapeutics.

[9]  D. Hommer,et al.  The effects of ceruletide in schizophrenia. , 1984, Archives of general psychiatry.

[10]  F. J. White,et al.  Interactions of cholecystokinin octapeptide and dopamine on nucleus accumbens neurons , 1984, Brain Research.

[11]  D. K. Meyer,et al.  Effects of selective dopamine D2-receptor agonists on the release of cholecystokinin-like immunoreactivity from rat neostriatum. , 1984, European journal of pharmacology.

[12]  A. Trzeciak,et al.  Cholecystokinin receptors: biochemical demonstration and autoradiographical localization in rat brain and pancreas using [3H] cholecystokinin8 as radioligand , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  R. W. Sikes,et al.  Effects of CCK-8 in the nucleus accumbens , 1984, Peptides.

[14]  T. Hökfelt,et al.  Effect of cholecystokinin-octapeptide on dopamine release from slices of cat caudate nucleus , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  John A. Williams,et al.  Binding specificity of the mouse cerebral cortex receptor for small cholecystokinin peptides , 1984, Regulatory Peptides.

[16]  J. Belleroche,et al.  The cholecystokinin analogue, caerulein, does not modulate dopamine release or dopamine-induced locomotor activity in the nucleus accumbens of rat , 1984, Neuroscience Letters.

[17]  J. Fallon,et al.  The origin of cholecystokinin terminals in the basal forebrain of the rat: Evidence from immunofluorencence and retrograde tracing , 1983, Neuroscience Letters.

[18]  J. Belleroche,et al.  Facilitation of GABA release by cholecystokinin and caerulein in rat cerebral cortex , 1983, Neuropeptides.

[19]  J. Rehfeld,et al.  Cholecystokinin in feline vagal and sciatic nerves: Concentration, molecular form and transport velocity , 1983, Brain Research.

[20]  D. de Wied,et al.  In rats, the behavioral profile of CCK-8 related peptides resembles that of antipsychotic agents. , 1983, European journal of pharmacology.

[21]  S. Iversen,et al.  CCK-8 modulation of mesolimbic dopamine: Antagonism of amphetamine-stimulated behaviors , 1983, Peptides.

[22]  D. Hommer,et al.  Cholecystokinin-like peptides potentiate apomorphine-induced inhibition of dopamine neurons. , 1983, European journal of pharmacology.

[23]  J. Joyce Multiple dopamine receptors and behavior , 1983, Neuroscience & Biobehavioral Reviews.

[24]  R. Jensen,et al.  COOH-terminal fragments of cholecystokinin. A new class of cholecystokinin receptor antagonists. , 1983, Biochimica et biophysica acta.

[25]  P. Kalivas,et al.  Influence of cholecystokinin on central monoaminergic pathways , 1983, Regulatory Peptides.

[26]  S. Snyder,et al.  Autoradiographic localization of cholecystokinin receptors in rodent brain , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  B. Bunney,et al.  Proglumide: selective antagonism of excitatory effects of cholecystokinin in central nervous system. , 1983, Science.

[28]  T. Hökfelt,et al.  Differential modulation by CCK-8 and CCK-4 of [3H]spiperone binding sites linked to dopamine and 5-hydroxytryptamine receptors in the brain of the rat , 1983, Neuroscience Letters.

[29]  C. Pert,et al.  Tritium-sensitive film autoradiography of [3H]cholecystokinin-5/pentagastrin receptors in rat brain. , 1983, European journal of pharmacology.

[30]  D. K. Meyer,et al.  Dopamine modulates cholecystokinin release in neostriatum , 1983, Nature.

[31]  D. Bloom,et al.  Cholecystokinin appears to have antipsychotic properties , 1982, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[32]  M. Palkovits,et al.  Cholecystokinin in the nucleus of the solitary tract of the rat: evidence for its vagal origin , 1982, Brain Research.

[33]  W. Oldendorf,et al.  Rapid appearance of intraventricularly administered neuropeptides in the peripheral circulation , 1982, Brain Research.

[34]  J. Morley,et al.  The effect of vagotomy on the satiety effects of neuropeptides and naloxone. , 1982, Life sciences.

[35]  M. Rogawski Cholecystokinin octapeptide: Effects on the excitability of cultured spinal neurons , 1982, Peptides.

[36]  T. Salt,et al.  The effects of C-terminal fragments of cholecystokinin on the firing of single neurones in the caudal trigeminal nucleus of the rat , 1982, Neuropeptides.

[37]  D. Schuster,et al.  Modulation of [3H]-dopamine binding by cholecystokinin octapeptide (CCK-8) , 1982, Peptides.

[38]  T. Moroji,et al.  Antipsychotic effects of ceruletide (caerulein) on chronic schizophrenia. , 1982 .

[39]  W. Oertel,et al.  Origin of the cholecystokinin-containing fibers in the rat caudatoputamen. , 1982, Science.

[40]  T. Hökfelt,et al.  Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. , 1981, Acta physiologica Scandinavica.

[41]  F. Goodwin,et al.  Cholecystokinin receptors are decreased in basal ganglia and cerebral cortex of Huntington's disease , 1981, Brain Research.

[42]  J. Rehfeld,et al.  Peptide-monoamine coexistence: Studies of the actions of cholecystokinin-like peptide on the electrical activity of midbrain dopamine neurons , 1981, Neuroscience.

[43]  J. Davison,et al.  Dibutyryl cyclic GMP, a competitive inhibitor of cholecystokinin/pancreozymin and related peptides in the gallbladder and ileum. , 1981, Canadian journal of physiology and pharmacology.

[44]  R. Jensen,et al.  Proglumide and benzotript: members of a different class of cholecystokinin receptor antagonists. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[45]  G. P. Smith,et al.  Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. , 1981, Science.

[46]  S. Paul,et al.  Vagotomy abolishes the inhibitory effects of cholecystokinin on rat exploratory behaviors , 1981 .

[47]  G. Zetler,et al.  Antinociceptive effect of centrally administered caerulein and cholecystokinin octapeptide (CCK-8)☆ , 1981 .

[48]  R. J. Gayton,et al.  Changes in brain cholecystokinin octapeptide following lesions of the medial forebrain bundle , 1981, Brain Research.

[49]  J. Kelly,et al.  The actions of cholecystokinin and related peptides on pyramidal neurones of the mammalian hippocampus , 1981, Brain Research.

[50]  B. Penke,et al.  Effects of cholecystokinin octapeptide on striatal dopamine metabolism and on apomorphine-induced stereotyped cage-climbing in mice. , 1981, European journal of pharmacology.

[51]  J. Rehfeld,et al.  A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: Evidence from immunohistochemistry combined with retrograde tracing , 1980, Neuroscience.

[52]  R. Innis,et al.  Cholecystokinin receptor binding in brain and pancreas: Regulation of pancreatic bindign by cyclic and acyclic guanine nucleotides , 1980 .

[53]  T. Hökfelt,et al.  Evidence for coexistence of dopamine and CCK in meso-limbic neurones , 1980, Nature.

[54]  I. Goldfine,et al.  Cholecystokinin receptors in the brain: characterization and distribution. , 1980, Science.

[55]  G. Dockray Cholecystokinins in rat cerebral cortex: Identification, purification and characterization by immunochemical methods , 1980, Brain Research.

[56]  J. D. De Mey,et al.  Immunohistochemical localization of cholecystokinin- and gastrin-like peptides in the brain and hypophysis of the rat. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Pinget,et al.  Release of cholecystokinin peptides from a synaptosome-enriched fraction of rat cerebral cortex. , 1979, Life sciences.

[58]  G. Aghajanian,et al.  Delayed iontophoretic ejection of substance P from glass micropipettes: Correlation with time-course of neuronal excitation in vivo , 1979, Neuropharmacology.

[59]  K. Houpt,et al.  Satiety elicited by cholecystokinin in intact and vagotomized rats , 1977, Physiology & Behavior.

[60]  J. Rehfeld,et al.  Heptadecapeptide gastrin in the vagal nerve. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[61]  B. Costall,et al.  Differentiation of the dopamine mechanisms mediating stereotyped behaviour and hyperactivity in the nucleus accumbens and caudate‐putamen , 1977, The Journal of pharmacy and pharmacology.

[62]  R. Roth,et al.  Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. , 1973, The Journal of pharmacology and experimental therapeutics.