Texture Feature Extraction and Classification

This paper describes a novel technique for texture feature extraction and classification. The proposed feature extraction technique uses an Auto-Associative Neural Network (AANN) and the classification technique uses a Multi-Layer Perceptron (MLP) with a single hidden layer. The two approaches such as AANN-MLP and statistical-MLP were investigated. The performance of the proposed techniques was evaluated on large benchmark database of texture patterns. The results are very promising compared to other techniques. Some of the experimental results are presented in this paper.

[1]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[2]  Its'hak Dinstein,et al.  A comparative study of neural network based feature extraction paradigms , 1999, Pattern Recognit. Lett..

[3]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[5]  Paul Jackway,et al.  Using the Granold for texture classification , 1999 .

[6]  Fang Liu,et al.  Periodicity, Directionality, and Randomness: Wold Features for Image Modeling and Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[8]  B. S. Manjunath,et al.  Texture features and learning similarity , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Jun Liu,et al.  Texture classification using multiresolution Markov random field models , 1999, Pattern Recognit. Lett..