Genetically encoded indicators of neuronal activity

Experimental efforts to understand how the brain represents, stores and processes information require high-fidelity recordings of multiple different forms of neural activity within functional circuits. Thus, creating improved technologies for large-scale recordings of neural activity in the live brain is a crucial goal in neuroscience. Over the past two decades, the combination of optical microscopy and genetically encoded fluorescent indicators has become a widespread means of recording neural activity in nonmammalian and mammalian nervous systems, transforming brain research in the process. In this review, we describe and assess different classes of fluorescent protein indicators of neural activity. We first discuss general considerations in optical imaging and then present salient characteristics of representative indicators. Our focus is on how indicator characteristics relate to their use in living animals and on likely areas of future progress.

[1]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[2]  M. Chalfie GREEN FLUORESCENT PROTEIN , 1995, Photochemistry and photobiology.

[3]  P. Kolodner,et al.  Electric-field-induced Schiff-base deprotonation in D85N mutant bacteriorhodopsin. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[4]  B. Sakmann,et al.  Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. , 1997, Biophysical journal.

[5]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[6]  G. Patterson,et al.  Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. , 1997, Biophysical journal.

[7]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[8]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[9]  M. Tachibana,et al.  Submillisecond Kinetics of Glutamate Release from a Sensory Synapse , 1998, Neuron.

[10]  R. Tsien,et al.  Circular permutation and receptor insertion within green fluorescent proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  W G Regehr,et al.  Timing of synaptic transmission. , 1999, Annual review of physiology.

[12]  J. Rothman,et al.  The use of pHluorins for optical measurements of presynaptic activity. , 2000, Biophysical journal.

[13]  B. Sakmann,et al.  Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex , 2000, The Journal of physiology.

[14]  A. Miyawaki,et al.  Circularly permuted green fluorescent proteins engineered to sense Ca2+ , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[16]  Gero Miesenböck,et al.  Transmission of Olfactory Information between Three Populations of Neurons in the Antennal Lobe of the Fly , 2002, Neuron.

[17]  A. Wong,et al.  Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain , 2003, Cell.

[18]  Mark A Rizzo,et al.  An improved cyan fluorescent protein variant useful for FRET , 2004, Nature Biotechnology.

[19]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Matt Wachowiak,et al.  In Vivo Imaging of Neuronal Activity by Targeted Expression of a Genetically Encoded Probe in the Mouse , 2004, Neuron.

[21]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[22]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[23]  Electric-field-induced Schiff-base deprotonation in D 85 N mutant bacteriorhodopsin , 2005 .

[24]  L. Looger,et al.  Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Diamond Deriving the Glutamate Clearance Time Course from Transporter Currents in CA1 Hippocampal Astrocytes: Transmitter Uptake Gets Faster during Development , 2005, The Journal of Neuroscience.

[26]  David Baker,et al.  Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. , 2006, Chemistry & biology.

[27]  W. Betz,et al.  Monitoring Synaptic Function at the Neuromuscular Junction of a Mouse Expressing SynaptopHluorin , 2007, The Journal of Neuroscience.

[28]  Lucas Sjulson,et al.  Optical recording of action potentials and other discrete physiological events: a perspective from signal detection theory. , 2007, Physiology.

[29]  Walther Akemann,et al.  Engineering and Characterization of an Enhanced Fluorescent Protein Voltage Sensor , 2007, Neuroscience Research.

[30]  E. K. Kosmidis,et al.  Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells , 2007, Journal of Neuroscience Methods.

[31]  B. Bean The action potential in mammalian central neurons , 2007, Nature Reviews Neuroscience.

[32]  R. Tsien,et al.  Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters , 2008, Proceedings of the National Academy of Sciences.

[33]  H. Sondermann,et al.  Structural basis for calcium sensing by GCaMP2. , 2008, Structure.

[34]  Damian J. Wallace,et al.  Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor , 2008, Nature Methods.

[35]  Michael Z. Lin,et al.  Improving the photostability of bright monomeric orange and red fluorescent proteins , 2008, Nature Methods.

[36]  John R. Huguenard,et al.  Imaging of glutamate in brain slices using FRET sensors , 2008, Journal of Neuroscience Methods.

[37]  Alexander Borst,et al.  Fluorescence Changes of Genetic Calcium Indicators and OGB-1 Correlated with Neural Activity and Calcium In Vivo and In Vitro , 2008, The Journal of Neuroscience.

[38]  L. Tian,et al.  Reporting neural activity with genetically encoded calcium indicators , 2008, Brain cell biology.

[39]  Kristin L. Hazelwood,et al.  Far-red fluorescent tags for protein imaging in living tissues. , 2009, The Biochemical journal.

[40]  Qi Wang Structural Basis for Calcium Sensing by GCaMP2 , 2009 .

[41]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[42]  Takeharu Nagai,et al.  Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano , 2010, Nature Methods.

[43]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[44]  M. Larkum,et al.  Frontiers in Neural Circuits Neural Circuits Methods Article , 2022 .

[45]  Lutz Schmitt,et al.  A structural classification of substrate‐binding proteins , 2010, FEBS letters.

[46]  Walther Akemann,et al.  Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP , 2010, European Biophysics Journal.

[47]  Lin Tian,et al.  Functional imaging of hippocampal place cells at cellular resolution during virtual navigation , 2010, Nature Neuroscience.

[48]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[49]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[50]  Roger Y. Tsien,et al.  Concurrent Imaging of Synaptic Vesicle Recycling and Calcium Dynamics , 2011, Front. Mol. Neurosci..

[51]  Takeharu Nagai,et al.  Quantitative Comparison of Genetically Encoded Ca2+ Indicators in Cortical Pyramidal Cells and Cerebellar Purkinje Cells , 2011, Front. Cell. Neurosci..

[52]  James H. Marshel,et al.  New Rabies Virus Variants for Monitoring and Manipulating Activity and Gene Expression in Defined Neural Circuits , 2011, Neuron.

[53]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[54]  Daniel T Chiu,et al.  Protein Quantification at the Single Vesicle Level Reveals That a Subset of Synaptic Vesicle Proteins Are Trafficked with High Precision , 2011, The Journal of Neuroscience.

[55]  Rafael Yuste,et al.  Imaging Voltage in Neurons , 2011, Neuron.

[56]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[57]  Michael J Higley,et al.  Calcium Signaling in Dendritic Spines , 2022 .

[58]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[59]  R. Tsien,et al.  pHTomato: A genetically-encoded indicator that enables multiplex interrogation of synaptic activity , 2012, Nature Neuroscience.

[60]  J. Spudich,et al.  Ultrasensitive Measurements of Microbial Rhodopsin Photocycles Using Photochromic FRET , 2012, Photochemistry and photobiology.

[61]  R. Tsien,et al.  Synaptic vesicle pools and dynamics. , 2012, Cold Spring Harbor perspectives in biology.

[62]  Vincent A. Pieribone,et al.  Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe , 2012, Neuron.

[63]  Thomas Knöpfel,et al.  Transfer of Kv3.1 voltage sensor features to the isolated Ci-VSP voltage-sensing domain. , 2012, Biophysical journal.

[64]  Walther Akemann,et al.  Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. , 2012, Journal of neurophysiology.

[65]  Drew N. Robson,et al.  Brain-wide neuronal dynamics during motor adaptation in zebrafish , 2012, Nature.

[66]  Michael Z. Lin,et al.  Improving FRET dynamic range with bright green and red fluorescent proteins , 2012, Nature Methods.

[67]  D. Maclaurin,et al.  Optical recording of action potentials in mammalian neurons using a microbial rhodopsin , 2011, Nature Methods.

[68]  Diego A. Pacheco,et al.  Fast GCaMPs for improved tracking of neuronal activity , 2013, Nature Communications.

[69]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[70]  C. Lohmann,et al.  Probing synaptic function in dendrites with calcium imaging , 2013, Experimental Neurology.

[71]  V. Pieribone,et al.  Genetically Targeted Optical Electrophysiology in Intact Neural Circuits , 2013, Cell.

[72]  T. Südhof,et al.  Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle , 2013, Neuron.

[73]  Yasushi Okamura,et al.  Improved detection of electrical activity with a voltage probe based on a voltage‐sensing phosphatase , 2013, The Journal of physiology.

[74]  F. Helmchen,et al.  Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex , 2013, Nature.

[75]  Wulfram Gerstner,et al.  Inference of neuronal network spike dynamics and topology from calcium imaging data , 2013, Front. Neural Circuits.

[76]  Oliver Griesbeck,et al.  Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator , 2013, Nature Medicine.

[77]  Jin Zhong Li,et al.  Enhanced Archaerhodopsin Fluorescent Protein Voltage Indicators , 2013, PloS one.

[78]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[79]  N. Honkura,et al.  Two-photon voltage imaging using a genetically encoded voltage indicator , 2013, Scientific Reports.

[80]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[81]  Jeffrey P. Gavornik,et al.  Spontaneous and Evoked Release Are Independently Regulated at Individual Active Zones , 2013, The Journal of Neuroscience.

[82]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..

[83]  James E. Fitzgerald,et al.  Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing. , 2013, Biophysical journal.

[84]  T. Matsuda,et al.  Highlighted Ca2+ imaging with a genetically encoded ‘caged’ indicator , 2013, Scientific Reports.

[85]  Takeharu Nagai,et al.  Highlightable Ca 2 + Indicators for Live Cell Imaging , 2013 .

[86]  Mark T. Harnett,et al.  An optimized fluorescent probe for visualizing glutamate neurotransmission , 2013, Nature Methods.

[87]  Takeharu Nagai,et al.  Highlightable Ca2+ indicators for live cell imaging. , 2013, Journal of the American Chemical Society.

[88]  Paul W. Sternberg,et al.  Archaerhodopsin Variants with Enhanced Voltage Sensitive Fluorescence in Mammalian and Caenorhabditis elegans Neurons , 2014, Nature Communications.

[89]  E. Jorgensen,et al.  Visualizing presynaptic function , 2013, Nature Neuroscience.

[90]  D. J. Harrison,et al.  Bright and fast multi-colored voltage reporters via electrochromic FRET , 2014, Nature Communications.

[91]  Samuel S-H Wang,et al.  Fast calcium sensor proteins for monitoring neural activity , 2014, Neurophotonics.

[92]  Michael Z. Lin,et al.  High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor , 2014, Nature Neuroscience.

[93]  Robert E. Campbell,et al.  pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis , 2014, The Journal of cell biology.

[94]  E. Kavalali,et al.  Fast retrieval and autonomous regulation of single spontaneously recycling synaptic vesicles , 2014, eLife.

[95]  Takashi Kawashima,et al.  A new era for functional labeling of neurons: activity-dependent promoters have come of age , 2014, Front. Neural Circuits.

[96]  Ruqiang Liang,et al.  Monitoring activity in neural circuits with genetically encoded indicators , 2014, Front. Mol. Neurosci..

[97]  Samouil L. Farhi,et al.  All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins , 2014, Nature Methods.

[98]  Simon X. Chen,et al.  Emergence of reproducible spatiotemporal activity during motor learning , 2014, Nature.

[99]  Attila Losonczy,et al.  Dendritic Inhibition in the Hippocampus Supports Fear Learning , 2014, Science.

[100]  R. Axel,et al.  Identifying Functional Connections of the Inner Photoreceptors in Drosophila using Tango-Trace , 2014, Neuron.

[101]  Christian Griesinger,et al.  Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes , 2014, Nature Methods.

[102]  Mark J. Schnitzer,et al.  Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors , 2014, Nature Communications.

[103]  Benjamin F. Grewe,et al.  Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[104]  L. Zweifel,et al.  Visualization of plasticity in fear-evoked calcium signals in midbrain dopamine neurons , 2014, Learning & memory.

[105]  Emery N. Brown,et al.  The BRAIN Initiative: developing technology to catalyse neuroscience discovery , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[106]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[107]  Karl Deisseroth,et al.  Closed-Loop and Activity-Guided Optogenetic Control , 2015, Neuron.

[108]  Michael Z. Lin,et al.  Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. , 2015, Current opinion in chemical biology.

[109]  Michael Broxton,et al.  SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function , 2015, Cell.

[110]  Nikhil R. Gandasi,et al.  Survey of Red Fluorescence Proteins as Markers for Secretory Granule Exocytosis , 2015, PloS one.

[111]  W. Zipfel,et al.  Green to red photoconversion of GFP for protein tracking in vivo , 2015, Scientific Reports.

[112]  Atsushi Miyawaki,et al.  Molecular spies for bioimaging--fluorescent protein-based probes. , 2015, Molecular cell.

[113]  Joshua W Shaevitz,et al.  Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[114]  J. Betley,et al.  Neurons for hunger and thirst transmit a negative-valence teaching signal , 2015, Nature.

[115]  Adam E Cohen,et al.  Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage. , 2015, Biophysical journal.

[116]  Mason Klein,et al.  Pan-neuronal imaging in roaming Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[117]  Claire E McKellar,et al.  Rational design of a high-affinity, fast, red calcium indicator R-CaMP2 , 2014, Nature Methods.

[118]  Daniel A. Dombeck,et al.  Calcium transient prevalence across the dendritic arbor predicts place field properties , 2014, Nature.

[119]  E. Schreiter,et al.  Green-to-Red Photoconversion of GCaMP , 2015, PloS one.

[120]  Misha B. Ahrens,et al.  Labeling of active neural circuits in vivo with designed calcium integrators , 2015, Science.

[121]  Benjamin F. Grewe,et al.  High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor , 2015, Science.

[122]  Junichi Nakai,et al.  Comparison of genetically encoded calcium indicators for monitoring action potentials in mammalian brain by two-photon excitation fluorescence microscopy , 2015, Neurophotonics.

[123]  H. Piao,et al.  Combinatorial Mutagenesis of the Voltage-Sensing Domain Enables the Optical Resolution of Action Potentials Firing at 60 Hz by a Genetically Encoded Fluorescent Sensor of Membrane Potential , 2015, The Journal of Neuroscience.

[124]  Bradley J Baker,et al.  Linker length and fusion site composition improve the optical signal of genetically encoded fluorescent voltage sensors , 2015, Neurophotonics.

[125]  Benjamin F. Grewe,et al.  Cellular Level Brain Imaging in Behaving Mammals: An Engineering Approach , 2015, Neuron.

[126]  Jonathan Bradley,et al.  Fast-Response Calmodulin-Based Fluorescent Indicators Reveal Rapid Intracellular Calcium Dynamics , 2015, Scientific Reports.

[127]  Mark J. Schnitzer Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging , 2015, CLEO 2015.

[128]  Shai Berlin,et al.  Photoactivatable Genetically-Encoded Calcium Indicators for targeted neuronal imaging , 2015, Nature Methods.

[129]  L. Tian,et al.  Imaging chemical neurotransmission with genetically encoded fluorescent sensors. , 2015, ACS chemical neuroscience.

[130]  Michael Z. Lin,et al.  Investigating neuronal function with optically controllable proteins , 2015, Front. Mol. Neurosci..

[131]  T. Knöpfel,et al.  Genetically encoded voltage indicators for large scale cortical imaging come of age. , 2015, Current opinion in chemical biology.

[132]  W. Gan,et al.  Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity , 2015, Nature.

[133]  A. Gordus,et al.  Sensitive red protein calcium indicators for imaging neural activity , 2016, bioRxiv.

[134]  K. Svoboda,et al.  A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging , 2016, bioRxiv.

[135]  Robert E Campbell,et al.  A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices , 2016, The Journal of Neuroscience.

[136]  K. Svoboda,et al.  A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging , 2016, bioRxiv.

[137]  Michael Z. Lin,et al.  Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo , 2016, Cell.

[138]  Na Ji,et al.  Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs , 2015, Nature Neuroscience.

[139]  David Pfau,et al.  Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data , 2016, Neuron.

[140]  Timothy W. Dunn,et al.  Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion , 2016, eLife.

[141]  Matthias Bethge,et al.  Benchmarking Spike Rate Inference in Population Calcium Imaging , 2016, Neuron.

[142]  Hiroki R Ueda,et al.  Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. , 2016, Cell chemical biology.

[143]  Hongkui Zeng,et al.  Resolution of High-Frequency Mesoscale Intracortical Maps Using the Genetically Encoded Glutamate Sensor iGluSnFR , 2016, The Journal of Neuroscience.

[144]  G. Arbuthnott,et al.  Presynaptic D1 heteroreceptors and mGlu autoreceptors act at individual cortical release sites to modify glutamate release , 2016, Brain Research.

[145]  Jeffrey N. Stirman,et al.  Wide field-of-view, multi-region two-photon imaging of neuronal activity in the mammalian brain , 2016, Nature Biotechnology.

[146]  Zeno Lavagnino,et al.  Quantitative Assessment of Fluorescent Proteins , 2016, Nature Methods.

[147]  Erik S. Welf,et al.  A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo , 2016, Nature Biotechnology.

[148]  Pablo E. Jercog,et al.  Large-Scale Fluorescence Calcium-Imaging Methods for Studies of Long-Term Memory in Behaving Mammals. , 2016, Cold Spring Harbor perspectives in biology.

[149]  Jinyoung Seo,et al.  Clearing and Labeling Techniques for Large-Scale Biological Tissues , 2016, Molecules and cells.