Mass Assembly of Stellar Systems and Their Evolution with the SMA (MASSES)—1.3 mm Subcompact Data Release

We present the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey, which uses the Submillimeter Array (SMA) interferometer to map the continuum and molecular lines for all 74 known Class 0/I protostellar systems in the Perseus molecular cloud. The primary goal of the survey is to observe an unbiased sample of young protostars in a single molecular cloud so that we can characterize the evolution of protostars. This paper releases the MASSES 1.3 mm data from the subcompact configuration (∼4″ or ∼1000 au resolution), which is the SMA’s most compact array configuration. We release both uv visibility data and imaged data for the spectral lines CO(2–1), 13CO(2–1), C18O(2–1), and N2D+(3–2), as well as for the 1.3 mm continuum. We identify the tracers that are detected toward each source. We also show example images of continuum and CO(2–1) outflows, analyze C18O(2–1) spectra, and present data from the SVS 13 star-forming region. The calculated envelope masses from the continuum show a decreasing trend with bolometric temperature (a proxy for age). Typical C18O(2–1) line widths are 1.45 km s−1, which is higher than the C18O line widths detected toward Perseus filaments and cores. We find that N2D+(3–2) is significantly more likely to be detected toward younger protostars. We show that the protostars in SVS 13 are contained within filamentary structures as traced by C18O(2–1) and N2D+(3–2). We also present the locations of SVS 13A’s high-velocity (absolute line-of-sight velocities >150 km s−1) red and blue outflow components. Data can be downloaded from https://dataverse.harvard.edu/dataverse/MASSES.

[1]  Qizhou Zhang,et al.  Hierarchical Fragmentation in the Perseus Molecular Cloud: From the Cloud Scale to Protostellar Objects , 2017, 1712.04960.

[2]  A. Goodman,et al.  Alignment between Protostellar Outflows and Filamentary Structure , 2017, 1707.08122.

[3]  M. Dunham,et al.  Protostellar accretion traced with chemistry. High resolution C18O and continuum observations towards deeply embedded protostars in Perseus , 2017, 1703.10225.

[4]  Ranjani Srinivasan,et al.  SWARM: A 32 GHz Correlator and VLBI Beamformer for the Submillimeter Array , 2016, 1611.02596.

[5]  M. Dunham,et al.  THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS , 2016, 1606.08445.

[6]  E. Rosolowsky,et al.  THE JCMT GOULD BELT SURVEY: EVIDENCE FOR DUST GRAIN EVOLUTION IN PERSEUS STAR-FORMING CLUMPS , 2016, 1605.06136.

[7]  N. Evans,et al.  A CATALOG OF LOW-MASS STAR-FORMING CORES OBSERVED WITH SHARC-II AT 350 μm , 2016, 1604.04022.

[8]  A. Goodman,et al.  MISALIGNMENT OF OUTFLOW AXES IN THE PROTO-MULTIPLE SYSTEMS IN PERSEUS , 2016, 1602.07397.

[9]  Leslie W. Looney,et al.  THE VLA NASCENT DISK AND MULTIPLICITY SURVEY OF PERSEUS PROTOSTARS (VANDAM). II. MULTIPLICITY OF PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD , 2016, 1601.00692.

[10]  M. Lombardi,et al.  Herschel-Planck dust optical depth and column density maps - II. Perseus , 2015, 1511.08503.

[11]  A. Goodman,et al.  MASS ASSEMBLY OF STELLAR SYSTEMS AND THEIR EVOLUTION WITH THE SMA (MASSES). MULTIPLICITY AND THE PHYSICAL ENVIRONMENT IN L1448N , 2015, 1511.01141.

[12]  S. Frimann,et al.  Large-scale numerical simulations of star formation put to the test: Comparing synthetic images and actual observations for statistical samples of protostars , 2015, 1510.07827.

[13]  D. Johnstone,et al.  YOUNG STELLAR OBJECTS IN THE GOULD BELT , 2015, 1508.03199.

[14]  Jonathan P. Williams,et al.  Molecule sublimation as a tracer of protostellar accretion: Evidence for accretion bursts from high angular resolution C18O images , 2015, 1504.02974.

[15]  P. Koch,et al.  OBSERVATIONS OF INFALLING AND ROTATIONAL MOTIONS ON A 1000 AU SCALE AROUND 17 CLASS 0 AND 0/I PROTOSTARS: HINTS OF DISK GROWTH AND MAGNETIC BRAKING? , 2014, 1412.1916.

[16]  N. Peretto,et al.  CLASS 0 PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD: A CORRELATION BETWEEN THE YOUNGEST PROTOSTARS AND THE DENSE GAS DISTRIBUTION , 2014, 1404.7142.

[17]  S. Corder,et al.  CARMA OBSERVATIONS OF PROTOSTELLAR OUTFLOWS IN NGC 1333 , 2013, 1307.3558.

[18]  Astrophysics,et al.  SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS , 2013, 1304.0436.

[19]  A. Giorgio,et al.  Herschel observations of B1-bS and B1-bN: two first hydrostatic core candidates in the Perseus star-forming cloud , 2012, 1209.5290.

[20]  T. Robitaille,et al.  APLpy: Astronomical Plotting Library in Python , 2012 .

[21]  D. Johnstone,et al.  HOW STARLESS ARE STARLESS CORES? , 2011, 1111.6606.

[22]  J. Foster,et al.  THE ENIGMATIC CORE L1451-mm: A FIRST HYDROSTATIC CORE? OR A HIDDEN VeLLO? , 2011, 1109.1207.

[23]  J. Jørgensen,et al.  Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422 - An overview of a large molecular line survey from the Submillimeter Array , 2011, 1109.0415.

[24]  Adam Ginsburg,et al.  PySpecKit: Python Spectroscopic Toolkit , 2011 .

[25]  M. Dunham,et al.  DETECTION OF A BIPOLAR MOLECULAR OUTFLOW DRIVEN BY A CANDIDATE FIRST HYDROSTATIC CORE , 2011, 1108.1342.

[26]  Qizhou Zhang,et al.  L1448 IRS2E: A CANDIDATE FIRST HYDROSTATIC CORE , 2010, 1004.2443.

[27]  D. Wilner,et al.  PROSAC: a submillimeter array survey of low-mass protostars - II. The mass evolution of envelopes, disks, and stars from the class 0 through I stages , 2009, 0909.3386.

[28]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[29]  T. Henning,et al.  IRAM-PdBI OBSERVATIONS OF BINARY PROTOSTARS. I. THE HIERARCHICAL SYSTEM SVS 13 in NGC 1333 , 2008, 0810.1712.

[30]  N. Evans,et al.  PROPERTIES OF THE YOUNGEST PROTOSTARS IN PERSEUS, SERPENS, AND OPHIUCHUS , 2008, 0809.4012.

[31]  P. Caselli,et al.  The N 2 D + /N 2 H + ratio as an evolutionary tracer of Class 0 protostars. ⋆ , 2008, 0809.3759.

[32]  S. Sakai,et al.  Astrometry of H2O Masers in Nearby Star-Forming Regions with VERA II SVS 13 in NGC 1333 , 2008 .

[33]  M. Dunham,et al.  Identifying the Low-Luminosity Population of Embedded Protostars in the c2d Observations of Clouds and Cores , 2007, 0806.1754.

[34]  D. Johnstone,et al.  Dynamics of Dense Cores in the Perseus Molecular Cloud , 2007, 0707.2769.

[35]  Qizhou Zhang,et al.  PROSAC: A Submillimeter Array Survey of Low-Mass Protostars. I. Overview of Program: Envelopes, Disks, Outflows, and Hot Cores , 2007, astro-ph/0701115.

[36]  A. Sargent,et al.  The Evolution of Outflow-Envelope Interactions in Low-Mass Protostars , 2006, astro-ph/0605139.

[37]  D. Padgett,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. III. Perseus Observed with IRAC , 2006, astro-ph/0603547.

[38]  D. Johnstone,et al.  The Large- and Small-Scale Structures of Dust in the Star-forming Perseus Molecular Cloud , 2006, astro-ph/0602089.

[39]  P. Mauskopf,et al.  Bolocam Survey for 1.1 mm Dust Continuum Emission in the c2d Legacy Clouds. I. Perseus , 2005, astro-ph/0602259.

[40]  E. F. Ladd,et al.  Star formation in Perseus - Clusters, filaments and the conditions for star formation , 2005 .

[41]  Lee G. Mundy,et al.  Unveiling the Circumstellar Envelope and Disk: A Subarcsecond Survey of Circumstellar Structures , 1999, astro-ph/9908301.

[42]  James M. Moran,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[43]  P. Myers,et al.  Bolometric temperatures of young stellar objects , 1993 .

[44]  L. Mundy,et al.  The extremely high velocity CO flow in HH 7-11 , 1990 .

[45]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[46]  P. Myers,et al.  Dense cores in dark clouds. II. NH3 observations and star formation. , 1983 .