ITER R&D: Vacuum Vessel and In-Vessel Components: Materials Development and Test

Materials R&D for the vessel and in-vesselcomponents has been performed in support ofITER design, and comprised the structural mate-rials (316L(N), CuCrZr, CuAl25, Inconel 718 andTi-alloys), plasma facing materials (Be, W andCFC) and joints of stainless steel (SS), betweenSS/Cu alloys, Cu alloys/Be, Cu/W and Cu/CFC,and ceramic materials, (Al

[1]  S. Zinkle,et al.  Effect of neutron irradiation on the mechanical properties and fracture mode of cu/ss joints , 2001 .

[2]  G. Kalinin,et al.  Comparative Analysis of Copper Alloys for the Heat Sink of Plasma Facing Components in ITER , 1998 .

[3]  G. Kalinin,et al.  ITER structural design criteria and their extension to advanced reactor blankets , 2000 .

[4]  H. Grote,et al.  Overview of EU CFCs development for plasma facing materials , 1998 .

[5]  Peter W. H. Smith,et al.  Treatment of irradiation effects in structural design criteria for fusion reactors 1 Work supported , 1997 .

[6]  Jochen Linke,et al.  Neutron-irradiation effects on high heat flux components – examination of plasma-facing materials and their joints , 2000 .

[7]  Evaluation of an Advanced Silicon Doped CFC for Plasma Facing Material , 1997 .

[8]  M. Victoria,et al.  Tensile and fatigue properties of two titanium alloys as candidate materials for fusion reactors , 2000 .

[9]  Dennis L. Youchison,et al.  The structure, properties and performance of plasma-sprayed beryllium for fusion applications , 1995 .

[10]  F. Garner,et al.  Fatigue behavior of copper and selected copper alloys for high heat flux applications , 1996 .

[11]  H. Sakamoto,et al.  Weldability of neutron irradiated austenitic stainless steels , 1999 .

[12]  H. Pacher,et al.  Carbon fiber composites application in ITER plasma facing components , 1998 .

[13]  K. Ioki,et al.  Assessment and selection of materials for ITER in-vessel components , 2000 .

[14]  V. R. Barabash,et al.  Neutron irradiation effects on plasma facing materials , 2000 .

[15]  D. Youchison,et al.  Performance of the different tungsten grades under fusion relevant power loads , 2001 .

[16]  Kazuyuki Nakamura,et al.  Disruption Erosion Tests on La2O3 Containing Tungsten Material , 2001 .

[17]  H. Kawamura,et al.  Re-weldability tests of irradiated austenitic stainless steel by a TIG welding method , 2000 .

[18]  Steven J. Zinkle,et al.  Evaluation of copper alloys for fusion reactor divertor and first wall components , 1996 .

[19]  A. Nadkarni,et al.  GlidCop® DSC properties in the temperature range of 20–350°C , 1996 .

[20]  I. Mazul,et al.  Study of alternative SS/Cu-alloy joining methods for ITER , 2001 .

[21]  D.D.L. Chung,et al.  Carbon fiber composites , 1994 .

[22]  R. Scholz,et al.  On the recovery of the physical and mechanical properties of a CuCrZr alloy subjected to heat treatments simulating the thermal cycle of hot isostatic pressing , 2000 .

[23]  J. W. Davis,et al.  Assessment of tungsten for use in the ITER plasma facing components 1 #AC-3013 with Sandia National Laboratories. 1 , 1998 .

[24]  R. Tivey,et al.  Armor and heat sink materials joining technologies development for ITER plasma facing components , 2000 .

[25]  R. Duwe,et al.  Performance of beryllium, carbon, and tungsten under intense thermal fluxes , 1997 .

[26]  E. V. Osch,et al.  Irradiation testing of 316L(N)-IG austenitic stainless steel for ITER , 1998 .

[27]  Steven J. Zinkle,et al.  Fracture toughness of copper-base alloys for fusion energy applications , 1999 .

[28]  H. Kawamura,et al.  Erosion characteristics of neutron-irradiated carbon-based materials under simulated disruption heat loads , 2000 .

[29]  H. Kawamura,et al.  Structural materials for ITER in-vessel component design , 1996 .

[30]  P. Lorenzetto,et al.  Main achievements of the EU HT test programme of ITER primary wall small scale mock ups , 1998 .

[31]  P. Lorenzetto,et al.  Stress Corrosion Cracking of AISI 316LN Stainless Steel in ITER Primary Water Conditions , 1996 .

[32]  A. Laukkanen,et al.  Damage mechanisms and fracture toughness of GlidCop® CuAl25 IG0 copper alloy , 2000 .

[33]  P. Lorenzetto,et al.  Assessment of the corrosion behaviour of structural materials in the water coolant of ITER , 1998 .

[34]  G. Kalinin,et al.  Material properties and design requirements for copper alloys used in ITER , 1998 .

[35]  Yu. V. Belous,et al.  Allocation of the Optimal Number of Frequencies in the Cellular Communications Network using Simulation Results , 1999 .

[36]  F. Touboul,et al.  Austenitic stainless steels, status of the properties database and design rule development , 1996 .

[37]  S. Suzuki,et al.  High heat flux testing of a HIP bonded first wall panel with built-in circular cooling tubes , 1998 .

[38]  P. Karjalainen-Roikonen,et al.  Effect of neutron irradiation on fracture toughness behaviour of copper alloys , 1998 .