Estimation and variable selection in single-index composite quantile regression
暂无分享,去创建一个
[1] Yan Yu,et al. Single-index quantile regression , 2010, J. Multivar. Anal..
[2] A. G. Fisher,et al. Generalized body composition prediction equations for men using simple measurement techniques , 1985 .
[3] Keith Knight,et al. Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .
[4] Runze Li,et al. Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.
[5] Hua Liang,et al. Estimation and Variable Selection for Semiparametric Additive Partial Linear Models (SS-09-140). , 2011, Statistica Sinica.
[6] Kjell A. Doksum,et al. On average derivative quantile regression , 1997 .
[7] B. Silverman,et al. Weak and strong uniform consistency of kernel regression estimates , 1982 .
[8] Tao Huang,et al. Penalized least squares for single index models , 2011 .
[9] Ker-Chau Li,et al. Sliced Inverse Regression for Dimension Reduction , 1991 .
[10] Wei-Min Qian,et al. Single-index composite quantile regression , 2012 .
[11] H. Tong,et al. Article: 2 , 2002, European Financial Services Law.
[12] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[13] Jian Huang,et al. SCAD-penalized regression in high-dimensional partially linear models , 2009, 0903.5474.
[14] Riquan Zhang,et al. Quantile regression and variable selection for the single-index model , 2014 .
[15] Ker-Chau Li,et al. On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma , 1992 .
[16] Hohsuk Noh,et al. Model Selection via Bayesian Information Criterion for Quantile Regression Models , 2014 .
[17] H. Zou,et al. Composite quantile regression and the oracle Model Selection Theory , 2008, 0806.2905.
[18] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[19] D. Pollard,et al. Asymptotics for minimisers of convex processes , 2011, 1107.3806.
[20] W. Härdle,et al. Semi-parametric estimation of partially linear single-index models , 2006 .
[21] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[22] H. Tong,et al. An adaptive estimation of dimension reduction , 2002 .
[23] Runze Li,et al. NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.
[24] R. Koenker,et al. Regression Quantiles , 2007 .
[25] P. Cabilio,et al. A simple test of symmetry about an unknown median , 1996 .
[26] Thomas M. Stoker,et al. Investigating Smooth Multiple Regression by the Method of Average Derivatives , 2015 .
[27] Riquan Zhang,et al. B spline variable selection for the single index models , 2017 .
[28] Hu Yang,et al. Penalized weighted composite quantile estimators with missing covariates , 2016 .
[29] Yujie Gai,et al. Weighted local linear composite quantile estimation for the case of general error distributions , 2013 .