Semantic Retrieval of Trademarks Based on Conceptual Similarity

Trademarks are signs of high reputational value. Thus, they require protection. This paper studies conceptual similarities between trademarks, which occurs when two or more trademarks evoke identical or analogous semantic content. This paper advances the state-of-the-art by proposing a computational approach based on semantics that can be used to compare trademarks for conceptual similarity. A trademark retrieval algorithm is developed that employs natural language processing techniques and an external knowledge source in the form of a lexical ontology. The search and indexing technique developed uses similarity distance, which is derived using Tversky's theory of similarity. The proposed retrieval algorithm is validated using two resources: a trademark database of 1400 disputed cases and a database of 378 943 company names. The accuracy of the algorithm is estimated using measures from two different domains: the R-precision score, which is commonly used in information retrieval and human judgment/collective human opinion, which is used in human-machine systems.

[1]  François Rousselot,et al.  An Application of Semantic Distance between Short Texts to Inventive Design , 2011, KEOD.

[2]  Whoi-Yul Kim,et al.  Content-based trademark retrieval system using a visually salient feature , 1998, Image Vis. Comput..

[3]  Ahmad Abdollahzadeh Barforoush,et al.  A new word sense similarity measure in wordnet , 2008, 2008 International Multiconference on Computer Science and Information Technology.

[4]  Eneko Agirre,et al.  Methodology and construction of the Basque WordNet , 2011, Lang. Resour. Evaluation.

[5]  Gazdaság Office for Harmonization in the Internal Market , 2010 .

[6]  Rossitza Setchi,et al.  Trademark image retrieval using an integrated shape descriptor , 2013, Expert Syst. Appl..

[7]  Christiane Fellbaum,et al.  Towards new information resources for public health - From WordNet to MedicalWordNet , 2006, J. Biomed. Informatics.

[8]  Rossitza Setchi,et al.  Concept-based indexing of annotated images using semantic DNA , 2012, Eng. Appl. Artif. Intell..

[9]  Chang-Tsun Li,et al.  Trademark image retrieval using synthetic features for describing global shape and interior structure , 2009, Pattern Recognit..

[10]  M. Felisa Verdejo,et al.  Using Eurowordnet in a Concept-Based Approach to Cross-Language Text Retrieval , 1999, Appl. Artif. Intell..

[11]  M. Dolores del Castillo,et al.  SyMSS: A syntax-based measure for short-text semantic similarity , 2011, Data Knowl. Eng..

[12]  Roberto Tedesco,et al.  A novel semantic information retrieval system based on a three-level domain model , 2013, J. Syst. Softw..

[13]  Veda C. Storey,et al.  An Ontology-Based Expert System for Database Design , 1998, Data Knowl. Eng..

[14]  Christiane Fellbaum,et al.  The Spanish version of WordNet 3.0 , 2008, KONVENS.

[15]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[16]  Rossitza Setchi,et al.  A Conceptual Model of Trademark Retrieval based on Conceptual Similarity , 2013, KES.

[17]  Remco C. Veltkamp,et al.  Practice and challenges in trademark image retrieval , 2007, CIVR '07.

[18]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[19]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[20]  Ted Pedersen,et al.  An Adapted Lesk Algorithm for Word Sense Disambiguation Using WordNet , 2002, CICLing.

[21]  William C. Regli,et al.  Putting the crowd to work in a knowledge-based factory , 2010, Adv. Eng. Informatics.

[22]  Yuh-Min Chen,et al.  Development of a semantic-based content mapping mechanism for information retrieval , 2013, Expert Syst. Appl..

[23]  John P. Eakins Retrieval of trade mark images by shape feature , 1994 .

[24]  Martin Chodorow,et al.  Combining local context and wordnet similarity for word sense identification , 1998 .

[25]  Erhard W. Hinrichs,et al.  Using part–whole relations for automatic deduction of compound-internal relations in GermaNet , 2013, Lang. Resour. Evaluation.

[26]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[27]  Christiane Fellbaum,et al.  Combining Local Context and Wordnet Similarity for Word Sense Identification , 1998 .

[28]  Paolo Rosso,et al.  On the evaluation and improvement of Arabic WordNet coverage and usability , 2013, Language Resources and Evaluation.

[29]  James Geller,et al.  Using WordNet synonym substitution to enhance UMLS source integration , 2009, Artif. Intell. Medicine.

[30]  Brendan T. O'Connor,et al.  Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks , 2008, EMNLP.

[31]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[32]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[33]  Clifford D. Scott Trademark Strategy in the Internet Age: Customer Hijacking and the Doctrine of Initial Interest Confusion , 2013 .

[34]  Daniela Petrelli,et al.  Hybrid Search: Effectively Combining Keywords and Semantic Searches , 2008, ESWC.

[35]  A. Tversky Features of Similarity , 1977 .

[36]  Rossitza Setchi,et al.  Semantic-based information retrieval in support of concept design , 2011, Adv. Eng. Informatics.

[37]  Bojan Furlan,et al.  Semantic similarity of short texts in languages with a deficient natural language processing support , 2013, Decis. Support Syst..

[38]  Keqiu Li,et al.  An effective solution for trademark image retrieval by combining shape description and feature matching , 2010, Pattern Recognit..