Red blood cell thermal fluctuations: comparison between experiment and molecular dynamics simulations

We outline a new method of analysis of thermal shape fluctuations of red blood cells, based on comparison between experiments and coarse-grained molecular dynamics simulations. The fluctuations of 2D equatorial contours of red blood cells are recorded experimentally using fast phase-contrast video microscopy, from which the fluctuation spectrum is calculated. The spectrum is compared to the corresponding contour fluctuation spectrum obtained from a finite-temperature particle-dynamics simulation, modelling a cell with bending and shear elasticity and conserved volume and surface area. We demonstrate that the simulation correctly describes the mean cell shape as well as the membrane thermal fluctuations, returning physically sound values for the relevant membrane elastic moduli.

[1]  Erich Sackmann,et al.  Theoretical and phase contrast microscopic eigenmode analysis of erythrocyte flicker : amplitudes , 1992 .

[2]  Kim Parker,et al.  Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence. , 2008, Biophysical journal.

[3]  H. Noguchi,et al.  Shape transitions of fluid vesicles and red blood cells in capillary flows. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Rafi Korenstein,et al.  Mechanical Fluctuations of the Membrane–Skeleton Are Dependent on F-Actin ATPase in Human Erythrocytes , 1998, The Journal of cell biology.

[5]  C. Lim,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[6]  R. Mukhopadhyay,et al.  Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer– couple hypothesis from membrane mechanics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Erich Sackmann,et al.  Bending elastic moduli of lipid bilayers : modulation by solutes , 1990 .

[8]  N. Mohandas,et al.  Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. , 1985, The Journal of clinical investigation.

[9]  R. Waugh,et al.  Thermoelasticity of red blood cell membrane. , 1979, Biophysical journal.

[10]  George Em Karniadakis,et al.  Accurate coarse-grained modeling of red blood cells. , 2008, Physical review letters.

[11]  D. Boal,et al.  Computer simulation of a model network for the erythrocyte cytoskeleton. , 1994, Biophysical journal.

[12]  O. N. Mesquita,et al.  Defocusing microscopy: An approach for red blood cell optics , 2006 .

[13]  Sackmann,et al.  Spectral analysis of erythrocyte flickering in the 0.3-4- microm-1 regime by microinterferometry combined with fast image processing. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[14]  S Levin,et al.  Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton. , 1991, Biophysical journal.

[15]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[16]  R M Hochmuth,et al.  Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. , 1973, Biophysical journal.

[17]  P. Low,et al.  The role of hemoglobin denaturation and band 3 clustering in red blood cell aging. , 1985, Science.

[18]  Subra Suresh,et al.  Mechanics of the human red blood cell deformed by optical tweezers [Journal of the Mechanics and Physics of Solids, 51 (2003) 2259-2280] , 2005 .

[19]  L. Snyder,et al.  Hemoglobin-spectrin complexes: interference with spectrin tetramer assembly as a mechanism for compartmentalization of band 1 and band 2 complexes. , 1995, Blood.

[20]  J. Fournier,et al.  Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size. , 2003, Physical review letters.

[21]  Dennis E. Discher,et al.  PHASE TRANSITIONS AND ANISOTROPIC RESPONSES OF PLANAR TRIANGULAR NETS UNDER LARGE DEFORMATION , 1997 .

[22]  S. Suresh,et al.  Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. , 2005, Biophysical journal.

[23]  Richard J. Sadus,et al.  Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation , 1999 .

[24]  Erich Sackmann,et al.  Dynamic reflection interference contrast (RIC-) microscopy : a new method to study surface excitations of cells and to measure membrane bending elastic moduli , 1987 .

[25]  Gerhard Gompper,et al.  Advanced flicker spectroscopy of fluid membranes. , 2003, Physical review letters.

[26]  E. Sackmann,et al.  Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. , 1995, Biophysical journal.

[27]  Gianluca Marcelli,et al.  Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model. , 2005, Biophysical journal.

[28]  D. Boal,et al.  Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. , 1998, Biophysical journal.

[29]  A. Zilman,et al.  Cytoskeleton confinement and tension of red blood cell membranes. , 2003, Physical review letters.

[30]  Jacques Prost,et al.  Refined contour analysis of giant unilamellar vesicles , 2004, The European physical journal. E, Soft matter.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Andrew G. Glen,et al.  APPL , 2001 .

[33]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[34]  Suliana Manley,et al.  Optical measurement of cell membrane tension. , 2006, Physical review letters.

[35]  Gerhard Gompper,et al.  Random surface discretizations and the renormalization of the bending rigidity , 1996 .

[36]  F. Brochard,et al.  Frequency spectrum of the flicker phenomenon in erythrocytes , 1975 .