Tensor decomposition in electronic structure calculations on 3D Cartesian grids

In this paper, we investigate a novel approach based on the combination of Tucker-type and canonical tensor decomposition techniques for the efficient numerical approximation of functions and operators in electronic structure calculations. In particular, we study applicability of tensor approximations for the numerical solution of Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids. We show that the orthogonal Tucker-type tensor approximation of electron density and Hartree potential of simple molecules leads to low tensor rank representations. This enables an efficient tensor-product convolution scheme for the computation of the Hartree potential using a collocation-type approximation via piecewise constant basis functions on a uniform nxnxn grid. Combined with the Richardson extrapolation, our approach exhibits O(h^3) convergence in the grid-size h=O(n^-^1). Moreover, this requires O(3rn+r^3) storage, where r denotes the Tucker rank of the electron density with r=O(logn), almost uniformly in n. For example, calculations of the Coulomb matrix and the Hartree-Fock energy for the CH"4 molecule, with a pseudopotential on the C atom, achieved accuracies of the order of 10^-^6 hartree with a grid-size n of several hundreds. Since the tensor-product convolution in 3D is performed via 1D convolution transforms, our scheme markedly outperforms the 3D-FFT in both the computing time and storage requirements.

[1]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[2]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[3]  Wolfgang Hackbusch,et al.  Tensor product approximation with optimal rank in quantum chemistry. , 2007, The Journal of chemical physics.

[4]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[5]  Stefan Goedecker,et al.  A particle-particle, particle-density algorithm for the calculation of electrostatic interactions of particles with slablike geometry. , 2007, The Journal of chemical physics.

[6]  Stefan Goedecker,et al.  Efficient solution of Poisson's equation with free boundary conditions. , 2006, The Journal of chemical physics.

[7]  Jan Almlöf,et al.  Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .

[8]  Boris N. Khoromskij,et al.  Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..

[9]  Gregory Beylkin,et al.  Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.

[10]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[11]  B. Khoromskij,et al.  Low rank Tucker-type tensor approximation to classical potentials , 2007 .

[12]  B. Dunlap,et al.  Robust and variational fitting: Removing the four-center integrals from center stage in quantum chemistry , 2000 .

[13]  J. Chisholm Approximation by Sequences of Padé Approximants in Regions of Meromorphy , 1966 .

[14]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[16]  Boris N. Khoromskij,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Fast and Accurate Tensor Approximation of Multivariate Convolution with Linear Scaling in Dimension Fast and Accurate Tensor Approximation of Multivariate Convolution with Linear Scaling in Dimension , 2022 .

[17]  Boris N. Khoromskij,et al.  Mathematik in den Naturwissenschaften Leipzig Tensor-Product Approximation to Operators and Functions in High Dimensions , 2007 .

[18]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[19]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[20]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[21]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[22]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.

[23]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[24]  M. Ratner Molecular electronic-structure theory , 2000 .

[25]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .

[26]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[27]  Boris N. Khoromskij On tensor approximation of Green iterations for Kohn-Sham equations , 2008 .

[28]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[29]  B. Khoromskij Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D , 2006 .

[30]  Frederick R. Manby,et al.  The Poisson equation in density fitting for the Kohn-Sham Coulomb problem , 2001 .

[31]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..

[32]  Philippe G. Ciarlet,et al.  Essential Computational Modeling in Chemistry : A derivative of Handbook of Numerical Analysis Special Volume : Computational Chemistry, Vol 10 , 2011 .

[33]  Jan Almlöf,et al.  DIRECT METHODS IN ELECTRONIC STRUCTURE THEORY , 1995 .