Optical directional coupler and Mach-Zehnder interferometer enhanced via 4H-SiC phonons

Surface phonon polaritons (SPhPs), similar to it cousin phenomenon surface plasmon polaitons (SPPs), are quasi-neutral particles resulting from light-matter coupling that can provide high modal confinement and long propagation in the mid to long infrared (IR). Mach-Zehnder interferometer (MZI) is a combination of two connected optical directional couplers (ODC). With the use of SPhPs, sub-wavelength feature sizes and modal areas can be achieved and to this end a hybrid SPhP waveguide, where propagation length and modal area can be trade-off, will be employed in the design of an ODC and MZI. This endeavor analyzes and characteristics both an ODC and MZI using commercially available numerical simulation software employing finite element method (FEM). The ODC and MZI are design using a novel SPhP hybrid waveguide design where a 4H-SiC substrate provides the polariton mode. The output ports power and relative phase difference between ports are investigated. SPhP enhanced ODC and MZI has applications including, but not limited to, next-generation ultra-compact photonic integrated circuits and waveguide based IR sensing.

[1]  Sailing He,et al.  Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. , 2013, Optics express.

[2]  James C. Ginn,et al.  Characterizing Infrared Frequency Selective Surfaces on Dispersive Media , 2007 .

[3]  Vittorio M. N. Passaro,et al.  Efficient Chemical Sensing by Coupled Slot SOI Waveguides , 2009, Sensors.

[4]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[5]  Xiang Zhang,et al.  Toward integrated plasmonic circuits , 2012 .

[6]  John A. Woollam,et al.  Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry , 1999 .

[7]  Lech Wosinski,et al.  Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides , 2012 .

[8]  Jin-Soo Shin,et al.  Graphene-based hybrid plasmonic modulator , 2015 .

[9]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[10]  Bahaa E. A. Saleh,et al.  Guided‐Wave Optics , 2001 .

[11]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[12]  C. N. Lau,et al.  Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. , 2011, Nano letters (Print).

[13]  Liu Liu,et al.  Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons , 2006 .

[14]  M. Goldflam,et al.  Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. , 2015, Nature nanotechnology.

[15]  H. Haus Waves and fields in optoelectronics , 1983 .

[16]  Mengtao Sun,et al.  Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits , 2015, Light: Science & Applications.

[17]  Yuchen Yang,et al.  Infrared surface phonon polariton waveguides on SiC Substrate , 2015, SPIE NanoScience + Engineering.

[18]  H. Haus,et al.  Coupled-mode theory , 1991, Proc. IEEE.

[19]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[20]  Claudio A. B. Saunders Filho,et al.  A 4H-SiC phonon polariton enhanced hybrid waveguide , 2016, 2016 IEEE International Symposium on Antennas and Propagation (APSURSI).

[21]  R. Hunsperger Coupling Between Waveguides , 2009 .

[22]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[23]  Igor Vurgaftman,et al.  Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. , 2016, Nature nanotechnology.