Visualization of prostatic nerves using polarization-sensitive optical coherence tomography

We demonstrate that polarization-sensitive optical coherence tomography (PS-OCT) can identify the cavernous nerve in the human and rat prostate ex vivo based on its birefringence. PS-OCT may be useful for nerve preservation during radical prostatectomy.

[1]  T. Yatagai,et al.  Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. , 2002, Optics letters.

[2]  Da-Kang Yao,et al.  Label-free photoacoustic microscopy of peripheral nerves , 2014, Journal of biomedical optics.

[3]  Barry Cense,et al.  In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. , 2004, Journal of biomedical optics.

[4]  John V. Frangioni,et al.  Nerve-Highlighting Fluorescent Contrast Agents for Image-Guided Surgery , 2011, Molecular imaging.

[5]  Mark C. Pierce,et al.  In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography , 2002 .

[6]  Johannes F de Boer,et al.  Extracting structural features of rat sciatic nerve using polarization-sensitive spectral domain optical coherence tomography. , 2012, Journal of biomedical optics.

[7]  Georg Bartsch,et al.  Anatomical radical retropubic prostatectomy: ‘curtain dissection’ of the neurovascular bundle , 2005, BJU international.

[8]  Shahab Chitchian,et al.  Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform. , 2009, Journal of biomedical optics.

[9]  Jun Zhang,et al.  Determination of burn depth by polarization-sensitive optical coherence tomography , 1999, Photonics West - Biomedical Optics.

[10]  Barry Cense,et al.  Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. , 2004, Burns : journal of the International Society for Burn Injuries.

[11]  Abhishek Srivastava,et al.  Advances in imaging the neurovascular bundle , 2012, Current opinion in urology.

[12]  Brett E Bouma,et al.  Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. , 2007, Journal of the American College of Cardiology.

[13]  Arthur L. Burnett,et al.  Novel methods for mapping the cavernous nerves during radical prostatectomy , 2015, Nature Reviews Urology.

[14]  Watt W Webb,et al.  Multiphoton microscopy of prostate and periprostatic neural tissue: a promising imaging technique for improving nerve-sparing prostatectomy. , 2009, Journal of endourology.

[15]  M. V. van Gemert,et al.  Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography , 1997, European Conference on Biomedical Optics.

[16]  Abhishek Srivastava,et al.  Multiphoton microscopy for structure identification in human prostate and periprostatic tissue: implications in prostate cancer surgery , 2011, BJU international.

[17]  Osamu Ukimura,et al.  Real-time transrectal ultrasound guidance during laparoscopic radical prostatectomy: impact on surgical margins. , 2006, The Journal of urology.

[18]  T. Ahlering,et al.  Transrectal ultrasound-guided, energy-free, nerve-sparing laparoscopic radical prostatectomy. , 2008, Journal of endourology.

[19]  T. Milner,et al.  Review of polarization sensitive optical coherence tomography and Stokes vector determination. , 2002, Journal of biomedical optics.

[20]  Jin Hyoung Park,et al.  In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy , 2016, Scientific Reports.

[21]  Stephen T. C. Wong,et al.  Label-free high-resolution imaging of prostate glands and cavernous nerves using coherent anti-Stokes Raman scattering microscopy , 2011, Biomedical optics express.

[22]  Beth Friedman,et al.  Fluorescent peptides highlight peripheral nerves during surgery in mice , 2011, Nature Biotechnology.

[23]  I. Nadelhaft,et al.  Visualization of the neurovascular bundles and major pelvic ganglion with fluorescent tracers after penile injection in the rat , 2008, BJU international.

[24]  Georges-Pascal Haber,et al.  Second prize: preliminary experience with the Niris optical coherence tomography system during laparoscopic and robotic prostatectomy. , 2007, Journal of endourology.

[25]  M. Menon,et al.  A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy. , 2010, European urology.

[26]  Michael A Fiddy,et al.  Combined image-processing algorithms for improved optical coherence tomography of prostate nerves. , 2010, Journal of biomedical optics.

[27]  Tayyaba Hasan,et al.  Polarization-sensitive optical frequency domain imaging based on unpolarized light. , 2011, Optics express.

[28]  Wan Kyun Chung,et al.  Dark-field polarization-sensitive optical coherence tomography. , 2015, Optics express.

[29]  Barry Cense,et al.  Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. , 2004, Optics letters.

[30]  Euiheon Chung,et al.  In vivo wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography of human oral cavity with a forward-viewing probe. , 2015, Biomedical optics express.

[31]  Soroush Rais-Bahrami,et al.  Imaging the cavernous nerves in the rat prostate using optical coherence tomography , 2007, Lasers in surgery and medicine.

[32]  J. Vanderhaeghen,et al.  Prostate capsule: computerized morphometric analysis of its components. , 1995, Urology.

[33]  J. Arezzo,et al.  Structural and functional investigations of the murine cavernosal nerve: a model system for serial spatio‐temporal study of autonomic neuropathy , 2007, BJU international.

[34]  R. Tsien,et al.  Fluorescence-guided surgery with live molecular navigation — a new cutting edge , 2013, Nature Reviews Cancer.

[35]  T. Yatagai,et al.  Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. , 2006, Optics express.

[36]  U. Nagele,et al.  The periprostatic autonomic nerves--bundle or layer? , 2008, European urology.

[37]  J. Kartush,et al.  Intraoperative facial nerve monitoring: A comparison of stimulating electrodes , 1985, The Laryngoscope.

[38]  A. Costello,et al.  Anatomical studies of the neurovascular bundle and cavernosal nerves , 2004, BJU international.

[39]  Benjamin Kaffenberger,et al.  The use of high resolution optical coherence tomography to evaluate robotic radical prostatectomy specimens. , 2009, International braz j urol : official journal of the Brazilian Society of Urology.

[40]  Johannes F de Boer,et al.  In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography. , 2015, Journal of biomedical optics.

[41]  Osamu Ukimura,et al.  Real-time transrectal ultrasound guidance during nerve sparing laparoscopic radical prostatectomy: pictorial essay. , 2006, The Journal of urology.

[42]  Jonathan M. Sorger,et al.  Nerve mapping for prostatectomies: novel technologies under development. , 2012, Journal of endourology.

[43]  Siavash Yazdanfar,et al.  Dual-mode laparoscopic fluorescence image-guided surgery using a single camera , 2012, Biomedical optics express.

[44]  Shahab Chitchian,et al.  Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland. , 2009, Journal of biomedical optics.

[45]  Seema Sharma,et al.  Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry. , 2010, The Journal of urology.

[46]  D. Stoianovici,et al.  Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: a feasibility study. , 2011, Urology.

[47]  T. Schlomm,et al.  Nerve distribution along the prostatic capsule. , 2007, European urology.

[48]  Misop Han,et al.  Imaging guidance in minimally invasive prostatectomy. , 2011, Urologic oncology.

[49]  T. Kessler,et al.  Nerve-sparing open radical retropubic prostatectomy. , 2007, European urology.

[50]  J. Fujimoto Optical coherence tomography for ultrahigh resolution in vivo imaging , 2003, Nature Biotechnology.

[51]  A. Fercher,et al.  Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. , 2001, Optics express.

[52]  Y. Kaiho,et al.  Nerves at the ventral prostatic capsule contribute to erectile function: initial electrophysiological assessment in humans. , 2009, European urology.

[53]  Soroush Rais-Bahrami,et al.  Optical coherence tomography of cavernous nerves: a step toward real-time intraoperative imaging during nerve-sparing radical prostatectomy. , 2008, Urology.

[54]  Y. Yasuno,et al.  Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. , 2008, Optics express.

[55]  W. C. Groat,et al.  Distribution of neurons in the major pelvic ganglion of the rat which supply the bladder, colon or penis , 1989, Cell and Tissue Research.

[56]  M. Pomper,et al.  Focal positive prostate-specific membrane antigen (PSMA) expression in ganglionic tissues associated with prostate neurovascular bundle: implications for novel intraoperative PSMA-based fluorescent imaging techniques. , 2013, Urologic oncology.

[57]  J. Arezzo,et al.  Effects of hyperglycemia on rat cavernous nerve axons: A functional and ultrastructural study , 2008, Experimental Neurology.

[58]  Michael Pircher,et al.  Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. , 2004, Journal of biomedical optics.

[59]  J. Nelson,et al.  High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin. , 2000, Optics letters.

[60]  Li-Ming Su,et al.  Identification and Imaging of the Nerves Responsible for Erectile Function in Rat Prostate, In Vivo, Using Optical Nerve Stimulation and Optical Coherence Tomography , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[61]  W. Steers,et al.  Fiberoptic imaging of cavernous nerves in vivo. , 2007, The Journal of urology.

[62]  Rui Li,et al.  Label‐free in vivo imaging of peripheral nerve by multispectral photoacoustic tomography , 2015, Journal of biophotonics.

[63]  M. Fujisawa,et al.  Anatomical analysis of the neurovascular bundle supplying penile cavernous tissue to ensure a reliable nerve graft after radical prostatectomy. , 2004, The Journal of urology.

[64]  Andrea Salonia,et al.  Improving the preservation of the urethral sphincter and neurovascular bundles during open radical retropubic prostatectomy. , 2005, European urology.