Energy properties preserving schemes for Burgers' equation

The Burgers’ equation, a simplification of the Navier–Stokes equations, is one of the fundamental model equations in gas dynamics, hydrodynamics, and acoustics that illustrates the coupling between convection/advection and diffusion. The kinetic energy enjoys boundedness and monotone decreasing properties that are useful in the study of the asymptotic behavior of the solution. We construct a family of non-standard finite difference schemes, which replicate the energy equality and the properties of the kinetic energy. Our approach is based onMickens’ rule [Nonstandard Finite DifferenceModels of Differential Equations, World Scientific, Singapore, 1994.] of nonlocal approximation of nonlinear terms. More precisely, we propose a systematic nonlocal way of generating approximations that ensure that the trilinear form is identically zero for repeated arguments. We provide numerical experiments that support the theory and demonstrate the power of the non-standard schemes over the classical ones. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 24: 41–59, 2008

[1]  Roumen Anguelov,et al.  Nonstandard finite difference method by nonlocal approximation , 2003, Math. Comput. Simul..

[2]  Ronald E. Mickens,et al.  Advances in the Applications of Nonstandard Finite Difference Schemes , 2005 .

[3]  R. Mickens Nonstandard Finite Difference Models of Differential Equations , 1993 .

[4]  J. Lubuma,et al.  Uniformly convergent non-standard finite difference methods for self-adjoint singular perturbation problems , 2006 .

[5]  Exact solutions to difference equation models of Burgers' equation , 1986 .

[6]  Saber Elaydi,et al.  Non-standard Discretization Methods for Some Biological Models , 2000 .

[7]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[8]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[9]  W. Dai NONSTANDARD FINITE DIFFERENCE SCHEMES FOR SOLVING NONLINEAR MICRO HEAT TRANSPORT EQUATIONS IN DOUBLE-LAYERED METAL THIN FILMS EXPOSED TO ULTRASHORT PULSED LASERS , 2005 .

[10]  R. Mickens Applications of nonstandard finite difference schemes , 2000 .

[11]  Ronald E. Mickens,et al.  A finite difference scheme for traveling wave solutions to Burgers equation , 1998 .

[12]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[13]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[14]  R. LeVeque Numerical methods for conservation laws , 1990 .

[15]  Peter D. Lax,et al.  THE FORMATION AND DECAY OF SHOCK WAVES , 1972 .

[16]  Roumen Anguelov,et al.  Contributions to the mathematics of the nonstandard finite difference method and applications , 2001 .

[17]  Olivier Pironneau,et al.  Introduction to Scientific Computing , 1998 .

[18]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[19]  A. Polyanin,et al.  Handbook of Nonlinear Partial Differential Equations , 2003 .

[20]  R. Temam Navier-Stokes Equations , 1977 .

[21]  R. Noyé,et al.  Numerical Solutions of Partial Differential Equations , 1983 .

[22]  R. Winther,et al.  Introduction to Partial Differential Equations: A Computational Approach , 1998 .

[23]  Ronald E. Mickens,et al.  A nonstandard finite difference scheme for the diffusionless Burgers equation with logistic reaction , 2003, Math. Comput. Simul..

[24]  Kailash C. Patidar,et al.  CONTRIBUTIONS TO THE THEORY OF NON-STANDARD FINITE DIFFERENCE METHODS AND APPLICATIONS TO SINGULAR PERTURBATION PROBLEMS , 2008 .

[25]  J. W. Thomas Numerical Partial Differential Equations , 1999 .

[26]  A. Sändig,et al.  Nonlinear Differential Equations , 1980 .

[27]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[28]  Roumen Anguelov,et al.  Qualitatively stable finite difference schemes for advection-reaction equations , 2003 .

[29]  Ronald E. Mickens NONSTANDARD FINITE DIFFERENCE METHODS , 2005 .

[30]  Ronald E. Mickens Discrete Models of Differential Equations: The Roles of Dynamic Consistency and Positivity , 2005 .

[31]  Yves Dumont,et al.  Non-standard finite-difference methods for vibro-impact problems , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.