A novel ultra-thin vapor chamber with composite wick for portable electronics cooling

[1]  Shuangfeng Wang,et al.  Experimental Research on Thermal Performance of Ultra-Thin Flattened Heat Pipes , 2022, Journal of Thermal Science.

[2]  Yuanjie Li,et al.  Hierarchical gradient mesh surfaces for superior boiling heat transfer , 2022, Applied Thermal Engineering.

[3]  Zhou Wang,et al.  Thermal performance of an ultra-thin flat heat pipe with striped super-hydrophilic wick structure , 2022, Applied Thermal Engineering.

[4]  Y. Li,et al.  A new ultra-thin vapor chamber with composite wick for thin electronic products , 2021 .

[5]  Yong Tang,et al.  Experimental investigation on wettability and capillary performance of ultrasonic modified grooved aluminum wicks , 2021 .

[6]  Y. Li,et al.  Effect of the passage area ratio of wick on an ultra-thin vapour chamber with a spiral woven mesh wick , 2021 .

[7]  H. Qiu,et al.  Microstructured wettability pattern for enhancing thermal performance in an ultrathin vapor chamber , 2021 .

[8]  Shu-Shen Lyu,et al.  Biomimetic Copper Forest Wick Enables High Thermal Conductivity Ultrathin Heat Pipe. , 2021, ACS nano.

[9]  K. Novoselov,et al.  Graphene film for thermal management: A review , 2020 .

[10]  E. Matioli,et al.  Co-designing electronics with microfluidics for more sustainable cooling , 2020, Nature.

[11]  Yong Tang,et al.  Hierarchically 3D-textured copper surfaces with enhanced wicking properties for high-power cooling , 2020 .

[12]  Wei Zhou,et al.  Development of novel flexible heat pipe with multistage design inspired by structure of human spine , 2020 .

[13]  Y. Li,et al.  Research and optimization design of limited internal cavity of ultra-thin vapor chamber , 2020 .

[14]  Y. Li,et al.  Fabrication and thermal performance of mesh-type ultra-thin vapor chambers , 2019, Applied Thermal Engineering.

[15]  Y. Li,et al.  Design, fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices , 2019, Energy Conversion and Management.

[16]  Yong Tang,et al.  Experimental study on thermal performances of ultra-thin flattened heat pipes , 2019, International Journal of Heat and Mass Transfer.

[17]  Yong Tang,et al.  Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor , 2019, Applied Thermal Engineering.

[18]  Ke Wang,et al.  Polyacrylonitrile coupled graphite oxide film with improved heat dissipation ability , 2019, Carbon.

[19]  Yingxi Xie,et al.  Thermal and optical investigations of a laser-driven phosphor converter coated on a heat pipe , 2019, Applied Thermal Engineering.

[20]  Yong Li,et al.  Review of applications and developments of ultra-thin micro heat pipes for electronic cooling , 2018, Applied Energy.

[21]  Yingjun Liu,et al.  Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films , 2018 .

[22]  C. Byon,et al.  Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures , 2018, International Journal of Heat and Mass Transfer.

[23]  Na Yeon Kim,et al.  Graphitization of graphene oxide films under pressure , 2018 .

[24]  Ji Li,et al.  Managing high heat flux up to 500 W/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick , 2017 .

[25]  L. Wrobel,et al.  Heat pipe based systems - Advances and applications , 2017 .

[26]  P. Li,et al.  Ultrahigh Thermal Conductive yet Superflexible Graphene Films , 2017, Advanced materials.

[27]  Zhi Yang,et al.  Ultrahigh Conductive Graphene Paper Based on Ball‐Milling Exfoliated Graphene , 2017 .

[28]  Yuji Saito,et al.  Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices , 2017 .

[29]  Ryan J. Lewis,et al.  Development of Ultra-Thin Thermal Ground Planes by Using Stainless-Steel Mesh as Wicking Structure , 2016, Journal of Microelectromechanical Systems.

[30]  Bo Li,et al.  Thermal performance of ultra-thin flattened heat pipes with composite wick structure , 2016 .

[31]  Ji Li,et al.  Experimental studies on a novel thin flat heat pipe heat spreader , 2016 .

[32]  Ryan J. Lewis,et al.  Microfabricated ultra-thin all-polymer thermal ground planes , 2015 .

[33]  Bin Shen,et al.  Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding , 2014 .

[34]  Yong Tang,et al.  Thermal performance of a novel porous crack composite wick heat pipe , 2014 .

[35]  Yong Tang,et al.  A multi-artery vapor chamber and its performance , 2013 .

[36]  Yong Tang,et al.  Evaluation of capillary performance of sintered porous wicks for loop heat pipe , 2013 .

[37]  Tapas K. Mallick,et al.  Opportunities and challenges in micro- and nano-technologies for concentrating photovoltaic cooling: A review , 2013 .

[38]  Longsheng Lu,et al.  Anti-Gravity Loop-shaped heat pipe with graded pore-size wick , 2012 .

[39]  C. Meinhart,et al.  A Flat Heat Pipe Architecture Based on Nanostructured Titania , 2010, Journal of Microelectromechanical Systems.

[40]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[41]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[42]  Yong Tang,et al.  Thermal performance enhancement of an ultra-thin flattened heat pipe with multiple wick structure , 2021 .

[43]  Zhonghui Sun,et al.  Efficient and inexpensive preparation of graphene laminated film with ultrahigh thermal conductivity , 2021 .

[44]  Y. Li,et al.  Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones , 2020 .

[45]  Zhenping Wan,et al.  Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics , 2019 .

[46]  Victor M. Bright,et al.  Flat flexible polymer heat pipes , 2012 .