Simulation of Sedimentation of Polydisperse Suspensions: A Particle-Based Approach

The global behavior of sedimenting monodisperse suspensions of rigid spheres can be deduced from the flux plot, but this approach is not available for polydisperse suspensions. The rapid increase in computing power has made simulation an attractive method. Sedimentation of suspensions with many species can now be handled easily. Two sources of difficulty, generation of a concentration gradient and control of fluctuations in concentration, can be overcome by choosing the controlling concentration as that immediately below the test sphere. Applied to randomly distributed particles, our deterministic algorithm yields the ensemble behavior of each species and prepares the way for stochastic simulations by correcting density inversions. The simplicity and generality of the method make it feasible to test any theoretical or empirical model against any experimental data. Simulating the experiments and comparing the simulated and experimental results is illustrated. © 2005 American Institute of Chemical Engineers AIChE J, 2005

[1]  A. Zeidan,et al.  REVIEW AND COMPARISON OF SOLIDS SETTLING VELOCITY MODELS , 2003 .

[2]  Raimund Bürger,et al.  Sedimentation and Thickening , 1999 .

[3]  S. G. Mason,et al.  Approach of a solid sphere to a rigid plane interface , 1961 .

[4]  Robert H. Davis,et al.  Hindered settling function with no empirical parameters for polydisperse suspensions , 1994 .

[5]  R. Bürger,et al.  Sedimentation and Thickening : Phenomenological Foundation and Mathematical Theory , 1999 .

[6]  Christian H. Hesse,et al.  Dynamic simulation of a stochastic model for particle sedimentation in fluids , 1994 .

[7]  Jacob H. Masliyah,et al.  ]Hindered settling in a multi-species particle system , 1979 .

[8]  P. T. Shannon,et al.  Batch and Continuous Thickening. Prediction of Batch Settling Behavior from Initial Rate Data with Results for Rigid Spheres , 1964 .

[9]  D. K. Pickard,et al.  A Markov Model for Sedimentation: Fundamental Issues and Insights , 1987 .

[10]  M. J. Lockett,et al.  Sedimentation of Binary Particle Mixtures , 1979 .

[11]  R. A. Ford,et al.  Simulation of sedimentation of bidisperse suspensions , 2004 .

[12]  P. T. Shannon,et al.  Batch and Continuous Thickening. Basic Theory. Solids Flux for Rigid Spheres , 1963 .

[13]  Robert H. Davis,et al.  Spreading of the interface at the top of a slightly polydisperse sedimenting suspension , 1988, Journal of Fluid Mechanics.

[14]  S. G. Mason,et al.  Approach of a solid sphere to a rigid plane interface. Part 2 , 1963 .

[15]  É. Guazzelli,et al.  Velocity fluctuations of a heavy sphere falling through a sedimenting suspension , 1996 .

[16]  D. K. Pickard,et al.  A Markov model for sedimentation , 1977 .

[17]  Raimund Bürger,et al.  Model Equations and Instability Regions for the Sedimentation of Polydisperse Suspensions of Spheres , 2002 .

[18]  V. S. Patwardhan,et al.  Sedimentation and fluidization in solid‐liquid systems: A simple approach , 1985 .

[19]  P. T. Shannon,et al.  Correction Batch and Continuous Thickening. Basic Theory. Solids Flux for Rigid Spheres , 1964 .

[20]  P. Mazur,et al.  On the Smoluchowski paradox in a sedimenting suspension , 1985 .

[21]  Manuel Laso Stochastic dynamic approach to transport phenomena , 1994 .

[22]  D. K. Pickard,et al.  A three‐parameter markov model for sedimentation , 1977 .

[23]  H. H. Steinour,et al.  Rate of sedimentation.Nonflocculated Suspensions of Uniform Spheres , 1944 .

[24]  Roger C. Pfaffenberger,et al.  Statistical Methods : For Business and Economics , 1977 .

[25]  M. T. Kamel,et al.  Sedimentation is container-size dependent , 1992 .

[26]  Monika Bargieł,et al.  A three-parameter Markov model for sedimentation III. A stochastic Runge—Kutta method for computing first-passage times , 1994 .

[27]  D. K. Pickard,et al.  Extensions and refinements of a Markov model for sedimentation , 1982 .

[28]  D. Drew,et al.  Theory of Multicomponent Fluids , 1998 .

[29]  E. M. Tory,et al.  Stochastic sedimentation and hydrodynamic diffusion , 2000 .

[30]  P. Mucha,et al.  A model for velocity fluctuations in sedimentation , 2004, Journal of Fluid Mechanics.

[31]  Robert H. Davis,et al.  Hindered settling of semidilute monodisperse and polydisperse suspensions , 1988 .

[32]  Raimund Bürger,et al.  Numerical simulation of the settling of polydisperse suspensions of spheres , 2000 .

[33]  Raimund Bürger,et al.  On mathematical models and numerical simulation of the fluidization of polydisperse suspensions , 2005 .

[34]  Modeling of sedimentation of polydisperse spherical beads with a broad size distribution , 2003 .

[35]  E. J. Hinch,et al.  Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres , 1995 .

[36]  G. J. Kynch A theory of sedimentation , 1952 .

[37]  E. Barnea,et al.  A generalized approach to the fluid dynamics of particulate systems: Part 1. General correlation for fluidization and sedimentation in solid multiparticle systems , 1973 .

[38]  George M. Homsy,et al.  HINDERED SETTLING AND HYDRODYNAMIC DISPERSION IN QUIESCENT SEDIMENTING SUSPENSIONS , 1988 .

[39]  Raimund Bürger,et al.  On upper rarefaction waves in batch settling , 2000 .

[40]  Raimund Bürger,et al.  Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression , 2003, SIAM J. Appl. Math..

[41]  Ken Been,et al.  Self-weight consolidation of soft soils: an experimental and theoretical study , 1981 .

[42]  M. T. Kamel,et al.  The distribution of kth nearest neighbours and its application to cluster settling in dispersions of equal spheres , 1979 .

[43]  M. Al-Naafa,et al.  Sedimentation of monodisperse and bidisperse hard‐sphere colloidal suspensions , 1992 .

[44]  M. T. Kamel,et al.  Mean velocities in polydisperse suspensions , 1997 .