Performance and cost of materials for lithium-based rechargeable automotive batteries

[1]  2020 Annual Merit Review, Vehicle Technologies Office , 2020 .

[2]  Alexander M. Bradshaw,et al.  Supply risks associated with lithium-ion battery materials , 2018 .

[3]  Lide M. Rodriguez-Martinez,et al.  Review—Solid Electrolytes for Safe and High Energy Density Lithium-Sulfur Batteries: Promises and Challenges , 2018 .

[4]  M. Winter,et al.  Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. , 2017, Physical chemistry chemical physics : PCCP.

[5]  X. Su,et al.  Recent advancement of SiOx based anodes for lithium-ion batteries , 2017 .

[6]  Yun-Sung Lee,et al.  Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li‐Ion Batteries , 2017 .

[7]  Hyun‐Wook Lee,et al.  Practical considerations of Si-based anodes for lithium-ion battery applications , 2017, Nano Research.

[8]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[9]  H. Flachberger,et al.  Wissenswertes zur Charakterisierung und Aufbereitung von Rohgrafiten , 2017, BHM Berg- und Hüttenmännische Monatshefte.

[10]  Pulickel M. Ajayan,et al.  A materials perspective on Li-ion batteries at extreme temperatures , 2017, Nature Energy.

[11]  M. Winter,et al.  Lithium‐Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium‐Metal Batteries , 2017 .

[12]  M. Winter,et al.  Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies. , 2017, Physical chemistry chemical physics : PCCP.

[13]  Stefan A. Freunberger,et al.  True performance metrics in beyond-intercalation batteries , 2017, Nature Energy.

[14]  Martin Winter,et al.  Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density , 2017, Journal of Solid State Electrochemistry.

[15]  Evan M. Erickson,et al.  Study of Cathode Materials for Lithium-Ion Batteries: Recent Progress and New Challenges , 2017 .

[16]  M. Winter,et al.  Synergistic Effect of Blended Components in Nonaqueous Electrolytes for Lithium Ion Batteries , 2017, Topics in Current Chemistry.

[17]  Kevin G. Gallagher,et al.  Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries , 2017 .

[18]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[19]  Peter Lamp,et al.  Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives , 2017 .

[20]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[21]  M. Winter,et al.  Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency , 2016 .

[22]  Dirk Uwe Sauer Don’t Wait for the Next Battery-cell Generation , 2016 .

[23]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[24]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[25]  Rebecca E. Ciez,et al.  The cost of lithium is unlikely to upend the price of Li-ion storage systems , 2016 .

[26]  Yan Chen,et al.  Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries , 2016, Nature Communications.

[27]  Benjamin Reuter,et al.  Assessment of sustainability issues for the selection of materials and technologies during product design: a case study of lithium-ion batteries for electric vehicles , 2016 .

[28]  Byung-Beom Lim,et al.  Comparative Study of Ni-Rich Layered Cathodes for Rechargeable Lithium Batteries: Li[Ni0.85Co0.11Al0.04]O2 and Li[Ni0.84Co0.06Mn0.09Al0.01]O2 with Two-Step Full Concentration Gradients , 2016 .

[29]  Adisa Azapagic,et al.  Environmental Assessment of Dimethyl Carbonate Production: Comparison of a Novel Electrosynthesis Route Utilizing CO2 with a Commercial Oxidative Carbonylation Process , 2016 .

[30]  J. Tarascon,et al.  The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries , 2016 .

[31]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[32]  J. Gutzmer,et al.  A Review of Graphite Beneficiation Techniques , 2016 .

[33]  H. Gasteiger,et al.  Erratum: Review—Electromobility: Batteries or Fuel Cells? [J. Electrochem. Soc., 162, A2605 (2015)] , 2016 .

[34]  L. Boon-Brett,et al.  Considerations on the Chemical Toxicity of Contemporary Li-Ion Battery Electrolytes and Their Components , 2016 .

[35]  Fredrik Larsson,et al.  Securing Lithium Foil Supply in a Future Imbalanced Market. A strategy suggestion for a prospective battery cell manufacturer , 2016 .

[36]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction , 2015 .

[37]  Marcel Weil,et al.  Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe , 2015 .

[38]  Jim Motavalli,et al.  Technology: A solid future , 2015, Nature.

[39]  Jens Tübke,et al.  Lithium–Sulfur Cells: The Gap between the State‐of‐the‐Art and the Requirements for High Energy Battery Cells , 2015 .

[40]  B. Nykvist,et al.  Rapidly falling costs of battery packs for electric vehicles , 2015 .

[41]  Peter Lamp,et al.  Future generations of cathode materials: an automotive industry perspective , 2015 .

[42]  Itaru Honma,et al.  Development of Bipolar All-solid-state Lithium Battery Based on Quasi-solid-state Electrolyte Containing Tetraglyme-LiTFSA Equimolar Complex , 2015, Scientific Reports.

[43]  Myung-Hyun Ryou,et al.  Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating , 2015 .

[44]  Myung-Hyun Ryou,et al.  Surface Treatment: Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating (Adv. Funct. Mater. 6/2015) , 2015 .

[45]  Emmanuel C. Alozie,et al.  Promises and Challenges , 2015 .

[46]  S. Martinet,et al.  Cost modeling of lithium‐ion battery cells for automotive applications , 2015 .

[47]  Martin Winter,et al.  Review—Chemical Analysis for a Better Understanding of Aging and Degradation Mechanisms of Non-Aqueous Electrolytes for Lithium Ion Batteries: Method Development, Application and Lessons Learned , 2015 .

[48]  Claire Villevieille,et al.  Rechargeable Batteries: Grasping for the Limits of Chemistry , 2015 .

[49]  H. Gasteiger,et al.  Review—Electromobility: Batteries or Fuel Cells? , 2015 .

[50]  T. Tran,et al.  Lithium Production Processes , 2015 .

[51]  Avicenne Energy,et al.  The Rechargeable Battery Market And Main Trends 2011 2020 , 2015 .

[52]  M. Winter,et al.  Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods , 2014 .

[53]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[54]  Ozan Toprakci,et al.  A review of recent developments in membrane separators for rechargeable lithium-ion batteries , 2014 .

[55]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[56]  M Stanley Whittingham,et al.  Ultimate limits to intercalation reactions for lithium batteries. , 2014, Chemical reviews.

[57]  L. Gaines,et al.  Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries , 2014 .

[58]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[59]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[60]  M. Winter,et al.  Coated Lithium Powder (CLiP) Electrodes for Lithium‐Metal Batteries , 2014 .

[61]  Gleb Yushin,et al.  High‐Capacity Anode Materials for Lithium‐Ion Batteries: Choice of Elements and Structures for Active Particles , 2014 .

[62]  Yuzuru Sato,et al.  Electrowinning of Lithium from LiOH in Molten Chloride , 2014 .

[63]  宏文 井伊,et al.  Method of manufacturing diethyl carbonate , 2013 .

[64]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[65]  Reiner Korthauer,et al.  Handbuch Lithium-Ionen-Batterien , 2013 .

[66]  Kevin G. Gallagher,et al.  Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density , 2013 .

[67]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[68]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[69]  Kevin G. Gallagher,et al.  Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. , 2011 .

[70]  M·舒尔茨-多布里克,et al.  Method for producing electrode materials , 2011 .

[71]  J. Besenhard,et al.  15. Lithiated Carbons , 2011 .

[72]  Yang-Kook Sun,et al.  Role of surface coating on cathode materials for lithium-ion batteries , 2010 .

[73]  David Linden,et al.  Linden's Handbook of Batteries , 2010 .

[74]  D. Uskoković,et al.  A review of recent developments in the synthesis procedures of lithium iron phosphate powders , 2009 .

[75]  Seong-In Moon,et al.  A new SiO/C anode composition for lithium-ion battery , 2008 .

[76]  J. L’Heureux,et al.  High-purity graphite powders for high performance , 2007 .

[77]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[78]  Yang-Kook Sun,et al.  Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. , 2005, Journal of the American Chemical Society.

[79]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[80]  Pankaj Arora,et al.  Battery separators. , 2004, Chemical reviews.

[81]  Michael Thackeray,et al.  Lithium-ion batteries: An unexpected conductor. , 2002, Nature materials.

[82]  P. Roth,et al.  Silicon Particle Formation by Pyrolysis of Silane in a Hot Wall Gasphase Reactor , 2001 .

[83]  Michael H. Westbrook,et al.  THE ELECTRIC CAR: DEVELOPMENT AND FUTURE OF BATTERY, HYBRID AND FUEL-CELL CARS , 2001 .

[84]  P. Cousot Abstract interpretation: Achievements and perspectives , 2000 .

[85]  M. Winter,et al.  Wiederaufladbare Batterien- 1.Teil; Akkumulatoren mit wässriger Elektrolytlösung , 1999 .

[86]  Christopher L. Marshall,et al.  Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive , 1997 .

[87]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[88]  Roger Pye Focus on Europe , 1979 .

[89]  Paper , 1977 .