Air-stable efficient polymer solar cells incorporating solution-processed titanium oxide layer

By introducing a titanium oxide (TiOx) layer between the active layer and the aluminum cathode in polymer based electronic devices, we have demonstrated devices with excellent air stability and with enhanced performance. The TiOx layer acts as a shielding and scavenging layer which prevents the intrusion of oxygen and humidity into the electronically active polymers, thereby improving the lifetime of unpackaged devices exposed to air by nearly two orders of magnitude. We have also fabricated polymer tandem solar cells with a power conversion efficiency of 6.5%, with each layer processed from solution. A transparent TiOx layer is used to separate and connect the front cell and the back cell. The TiOx layer serves as an electron transport and collecting layer for the first cell and as a stable foundation that enables the fabrication of the second cell to complete the tandem cell architecture. We use an inverted structure with the low band-gap polymer/fullerene composite as the charge separating layer in the front cell and the high band-gap polymer composite as the charge separating layer in the back cell.

[1]  Masahiro Hiramoto,et al.  Effect of Thin Gold Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell , 1990 .

[2]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[3]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[4]  Vishal Shrotriya,et al.  Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells , 2006 .

[5]  J. Burdick,et al.  Spectral response and I–V measurements of tandem amorphous-silicon alloy solar cells , 1986 .

[6]  S. Forrest,et al.  Reliability and degradation of organic light emitting devices , 1994 .

[7]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[8]  Daniel Moses,et al.  Subpicosecond photoinduced electron transfer from conjugated polymers to functionalized fullerenes , 1996 .

[9]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[10]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[11]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[12]  Wendy D. Bennett,et al.  Gas permeation and lifetime tests on polymer-based barrier coatings , 2001, SPIE Optics + Photonics.

[13]  Daniel Moses,et al.  Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material , 2007 .

[14]  Carl R. Osterwald,et al.  Practical considerations in tandem cell modeling , 1989 .

[15]  Hans-Jürgen Prall,et al.  Enhanced spectral coverage in tandem organic solar cells , 2006 .

[16]  Wendy D. Bennett,et al.  Organic light-emitting devices with extended operating lifetimes on plastic substrates , 2002 .

[17]  Ronald Österbacka,et al.  Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojunction solar cells , 2006 .

[18]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[19]  Christoph J. Brabec,et al.  Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time , 2001 .

[20]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[21]  Ingo Riedel,et al.  Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices , 2004 .

[22]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[23]  Christoph J. Brabec,et al.  Organic photovoltaics: technology and market , 2004 .

[24]  Jae Soo Yoo,et al.  Triple-layer passivation for longevity of polymer light-emitting diodes , 2001 .

[25]  Moses,et al.  Ultrafast spectroscopic studies of photoinduced electron transfer from semiconducting polymers to C60. , 1994, Physical review. B, Condensed matter.

[26]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[27]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[28]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[29]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[30]  Alan J. Heeger,et al.  Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions , 1995 .

[31]  Kamala Rajan,et al.  Thin film encapsulated flexible organic electroluminescent displays , 2003 .